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The human microbiome represents a vastly complex

ecosystem that is tightly linked to our development, physiology,

and health. Our increased capacity to generate multiple

channels of omic data from this system, brought about by

recent advances in high throughput molecular technologies,

calls for the development of systems-level methods and

models that take into account not only the composition of

genes and species in a microbiome but also the interactions

between these components. Such models should aim to study

the microbiome as a community of species whose metabolisms

are tightly intertwined with each other and with that of the host,

and should be developed with a view towards an integrated,

comprehensive, and predictive modeling framework. Here, we

review recent work specifically in metabolic modeling of the

human microbiome, highlighting both novel methodologies and

pressing challenges. We discuss various modeling approaches

that lay the foundation for a full-scale predictive model,

focusing on models of interactions between microbial species,

metagenome-scale models of community-level metabolism,

and models of the interaction between the microbiome and the

host. Continued development of such models and of their

integration into a multi-scale model of the microbiome will lead

to a deeper mechanistic understanding of how variation in the

microbiome impacts the host, and will promote the discovery of

clinically relevant and ecologically relevant insights from the

rich trove of data now available.
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Introduction
Our ability to study microbial communities in their

natural environments has improved dramatically over
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the past few years thanks to exciting advances in high-

throughput molecular methods and biological assays.

Specifically, the adaptation of –omic technologies from

traditional clonal biology to the study of mixed microbial

consortia has bypassed the need to isolate and to culture

individual species and has removed many of the obstacles

that commonly hindered research in microbial ecology.

Such meta’omic technologies [1], including, first and fore-

most, metagenomics [2], but also metatranscriptomics,

metaproteomics and metametabolomics [3], can provide

valuable information about the diversity, composition,

function, and metabolic capacity of a given microbial

ecosystem. Shotgun metagenomic sequences, for

example, can be aligned to known genomes or mapped

to known gene orthology groups to determine the taxo-

nomic or functional composition of the community.

Using these technologies, researchers are now starting to

explore the communities found in various habitats, ran-

ging from soil and marine environments [4–6] to the

intestines of mammals [7]. The human microbiome, in

particular, has been a major focus of study, due to its

massive impact on human health [1]. The human micro-

biome comprises 10 times the number of cells as the

human host [8] and more than 150 times as many genes

[9�]. Recent studies have extensively cataloged the com-

position of the healthy human microbiome, determining

the core taxa and genes present in the microbiome and

the range of variation [9�,10,11��]. Additional studies have

tracked individual subjects across time to explore the

dynamics of the microbiome in infants [12�] and in

healthy adults [13], and the response of the microbiome

to perturbations [14]. Most importantly, comparative

metagenomic studies have demonstrated significant

associations between the taxonomic and genomic com-

position of the microbiome and several complex diseases

such as obesity [15,16], diabetes [17], and inflammatory

bowel disease [18].

Clearly, a comprehensive understanding of the micro-

biome, its activity, and its impact on the human host

cannot be gained by cataloging species and gene com-

position alone. Systems-level interactions between

species, across pathways, and with the host all contribute

to the assembly, function, dynamics, and resilience of the

microbiome and must be taken into account

[19�,20,21,22��]. Microbiome research would therefore

benefit tremendously from going beyond statistical and

comparative studies and from applying systems biology
www.sciencedirect.com
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approaches to study the microbiome across multiple

levels [23–25]. Multiple such approaches have been pro-

posed, drawing on established modeling concepts from a

variety of disciplines, including graph theory-based mod-

eling, dynamical modeling, game-theoretical approaches,

and agent-based modeling [26–29]. Here, we focus

specifically on network-based and stoichiometric frame-

works, which have proved successful in elucidating causal

mechanisms underlying the behavior of single species

[30–32], their ecology [33], and their evolution [34,35].

These frameworks can easily be applied on a large-scale

and utilize single time-point data. Ultimately, however,

microbiome research should aim to generate a compre-

hensive systems-level model of the microbiome, capable

of predicting function and dynamics from detailed data on

molecular, genomic, and species composition. Such a

model will not only serve as a touchstone for a profound

understanding of the microbiome but will allow clinicians

to design and offer individualized microbiome-based

therapies [19�].

Modeling the human microbiome — a complex and still

largely uncharted and poorly understood biological sys-

tem — is clearly a daunting task. The development of a

predictive systems-level model of the microbiome

represents a major leap forward and may remain out of

reach for many years to come. In this review, we discuss

preliminary efforts to tackle this challenge. While our

primary motivation and emphasis is the human micro-

biome (and specifically, the human gut microbiome),

many of the studies discussed below focus on other

microbial communities or on the development of more

generic modeling frameworks, as such studies face similar

challenges and often introduce broadly applicable

solutions. We focus mostly on metabolic modeling,

although ultimately, other processes such as regulation

and signaling should be integrated into such models. In

the sections below we discuss models that highlight

various aspects of microbial communities, including

species interactions within the community, community-

wide metabolism, and interactions between the com-

munity and the host. We believe that these aspects are

all crucial for the construction of a comprehensive model

of the microbiome and that it is only by integrating such

models across multiple scales that a predictive under-

standing of the microbiome can be gained (Figure 1).

A microbial tangled bank
In the concluding paragraph of On the Origin of Species,
Darwin marvels about the complexity of the living world.

He contemplates ‘a tangled bank’, inhabited by many

different species of plants, birds, insects, and worms,

which are all ‘dependent upon each other in so complex a
manner’. Nowadays, researchers express similar marvel at

the microbial world. Just like Darwin’s tangled bank, the

complexity of microbial ecosystems stems not only from

the surprisingly high number of species comprising many
www.sciencedirect.com 
microbial communities, but also from the myriad ways

these species interact. An organism may compete

resources away from one neighbor, while supplying essen-

tial nutrients to another [36,37]. Highly organized syn-

trophic consortia are common and often form

multicellular structures with close physical proximity

between partners [38]. Antibiotic production and resist-

ance may partition the community into distinct social

units [39,40]. Community members can communicate

through a variety of signaling molecules and may even

disrupt signaling pathways of competitors [41]. As a result

of these mutual dependencies, microbes often depend

completely on the community for survival and resist

isolation and culturing attempts [42].

Because of the prevalence and complexity of interactions

among microbes, much effort has been invested in map-

ping such interactions and in characterizing the impact

one species may have on the growth of another. One

straightforward approach to obtain insights about poten-

tial interactions relies on co-culture growth assays. For

example, growth assays in a synthetic oral system

revealed a web of interacting commensal organisms

responsible for colonizing the enamel, developing bio-

film, and ultimately causing disease [43–46]. A similar

approach was used to evaluate the productivity of many

simple two-species communities, demonstrating that the

majority of combinations have a negative effect and

suggesting that adaptation typically results in competi-

tive, rather than cooperative, interactions [47]. Chemostat

co-cultures of several gut bacteria and a statistical analysis

of the observed temporal abundance data were used to

examine colonization patterns and species interactions in

a simplified model of the intestinal tract [21].

More recently, with the availability of metagenomic-

based species composition data, co-occurrence analysis

has become a common practice for inferring potential

dependencies between species [48]. Such analyses are

often performed on a very large scale, identifying for

example, thousands of co-occurrence and co-exclusion

relationships within the human microbiome [9�,49] or

throughout the environment [50]. Similar approaches

have revealed a web of horizontal gene transfers among

species that share similar ecologies [51]. Integrating such

co-occurrence studies with phylogenetic measures further

demonstrated that intestinal communities are structured

by non-neutral processes and that observed species abun-

dance patterns are driven by deterministic interactions

between species and with the environment [52].

Notably, however, the methods discussed above for

studying species interactions all take a phenomenological

approach; evidence of interaction is inferred from associ-

ation in abundance across samples, which can be largely

affected by sampling depth, or from some deviation

observed in a co-culture from the growth obtained in a
Current Opinion in Biotechnology 2013, 24:810–820
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An overview of microbiome modeling. Genomic, metagenomic, and other meta’omic data are combined with various computational methodologies to

model different aspects of the microbiome. These models can then be integrated to obtain a comprehensive, systems-level, predictive model.
mono-culture. Exact mechanisms of interaction are not

integrated into such methods, nor can they be directly

inferred by them. In contrast, the systems biology

approaches described below offer a unique suite of tools

to model microbial organisms, to examine potential chan-

nels of interaction, and to obtain a mechanistic under-

standing of the way species interact.

Network-based modeling of species
interaction
One approach for predicting metabolic interactions be-

tween species relies on simple connectivity-based net-

work models of microbial metabolism coupled with a

careful analysis of their structure and topology. In such

studies, the metabolic network of each species is recon-

structed based on the set of enzymatic genes encoded in

its genome. As an organism evolves and adapts to its

environment, the set of metabolic reactions it can catalyze

and the overall organization of its metabolic network

reflect its interactions with the environment and with

other species [53,54]. Analysis of the metabolic network

topology can therefore be used to detect such adaptive

signatures and to obtain insights into the organism’s

habitat and ecology. This ‘reverse-ecology’ research

approach has proved successful in elucidating the
Current Opinion in Biotechnology 2013, 24:810–820 
relationship between microbial species and their environ-

ment on a large scale [33,55–57].

Specifically, at the core of several studies of species

interactions are two methods for characterizing a species’

habitat and metabolic capacity: First, the seed set frame-

work [56�] applies a graph theory-based algorithm to

analyze the topology of a metabolic network and to detect

the set of metabolites acquired from the environment.

Such metabolites represent the biochemical habitat of an

organism. Second, the network expansion algorithm [58]

identifies the set of metabolites an organism can synthes-

ize from a given set of precursors. These two methods

have been recently combined to predict metabolic com-

petition between microbial species and the deleterious

effect that the presence of one species may have on the

metabolic capacity of the other [59�]. When applied to

clusters of literature-derived co-occurring species, it was

shown that higher competition within a cluster is associ-

ated with lower mean growth. The seed set framework

and the expansion algorithm have similarly been used to

investigate ecological strategies to cope with competitive

interactions across hundreds of species [60]. This analysis

demonstrated that competitive interactions force species

to adopt one of two ecological strategies: adapt to a narrow
www.sciencedirect.com
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set of environments with lower competition, or to a wide

set of environments while maintaining high growth rates.

Additional approaches, specifically those that apply such

methods on a large scale to study complex communities

and that compare predicted interactions to metagenomic-

derived species co-occurrence have great potential to

reveal the forces that act on these communities and shape

their characteristic structure.

Clearly, however, competition is only one of many ways

microbial species interact. Cooperative metabolic inter-

actions can lead to increased growth or to the activation of

novel pathways. An extension of the network expansion

algorithm, termed metabolic synergy, was introduced to

quantify the increase in metabolic capacity a pair of

organisms achieves through cooperation [61]. By deter-

mining the metabolic synergy of a large set of pairs of

organisms, it was shown that particular structural features

and reactions are more important for synergy than overall

dissimilarity between the cooperating networks. This

suggests that metabolic synergy is most effective when

the cooperating organisms are neither too similar nor too

dissimilar. Topological approaches have also been used to

investigate specific exchanges between organisms known

to cooperate. As an example, Cottret et al. applied the

seed set framework to a host–microbe system consisting

of the sharpshooter Homalodisca coagulata and the endo-

cytobionts Baumannia cicadellinicola and Sulcia muelleri
[62�]. B. cicadellinicola and S. muelleri are known to acquire

some metabolites from their insect host, and to exchange

others amongst themselves. Notably, it was shown that all

seeds common to both endocytobionts are synthesized by

the host, highlighting their shared dependency on these

compounds. An additional network-based method

(PITUFO; [63]) was then used to characterize the meta-

bolic exchanges between the two endocytobionts and to

implicate specific pathways in their cooperative growth.

Constraint-based modeling of species
interaction
Constraint-based approaches [30] aim to model, charac-

terize, and quantify metabolic processes by defining a set

of simple stoichiometric and thermodynamic constraints

that control the metabolic fluxes in the cell. The flux

through each reaction and the overall metabolic activity of

the cell in a given environment can then be determined

by optimizing some cellular objective with respect to

these constraints. For example, Flux Balance Analysis

(FBA) assumes that maximal growth is governing the

metabolic function of the cell and accordingly uses

optimal growth as an objective function [64]. Alterna-

tively, different objectives have been proposed for mod-

eling knockout strains that have not evolved toward an

optimal growth in a mutant state [65,66].

Although constraint-based methods have been shown to

appropriately predict cellular metabolism [67,68] and
www.sciencedirect.com 
proved useful for biomedical and industrial applications

[69], constraint-based modeling of microbial communities

has grown slowly. This is partly because high-quality

constraint-based models require a meticulous reconstruc-

tion protocol [70�], and to date, such models are available

only for a small number of the many human microbiome

species recently characterized and sequenced (but see

also Refs [71�,72]). Previous efforts to model microbial

communities using constraint-based methods have there-

fore focused mainly on simple two-species communities,

and set out to elucidate specific aspects of species inter-

actions. Stolyar et al. [73��] constructed the first such

model to examine syntrophic interactions between Desul-
fovibrio vulgaris and Methanococcus maripaludis. Freilich

et al. [74�] identified possible cooperative, competitive,

and neutral interactions between pairs of species, inter-

estingly finding that predicted cooperative interactions

are typically unidirectional. Wintermute and Silver [75�]
modeled pairs of Escherichia coli auxotroph mutants to

qualitatively predict metabolic mutualism.

While these simple models demonstrate the tremendous

potential of constraint-based models for studying species

interaction and inferring inter-species metabolic transfer,

they also highlight two important challenges facing

researchers who follow this modeling approach. First,

the choice of an objective function is a crucial step and

is not at all clear in the context of a community model.

Stolyar et al. [73��] used as an objective function a simple

fixed combination of biomass from both organisms, favor-

ing the growth of D. vulgaris. Another straightforward

definition of an objective function is overall community

growth [74�,75�]. Notably, however, such an objective

inherently assumes that community members cooperate

and act for the common good of the community. This

may, for example, lead to predictions where one species

barely grows (although nutrients are available) to enable

the growth of another species. The development of a

biologically meaningful and broadly applicable method to

integrate many different species’ objectives within a

community context is a challenging task and one for

which no clear consensus is currently available (see also

Ref. [76]). The second challenge concerns the design of

model compartments (e.g. representing species or orga-

nelles) and the partitioning of the reactions and the

metabolites between the different compartments. The

choice of a compartmentalization scheme may depend on

the scale of the study, the data available, and the specific

question one may wish to address [77��]. It can, however,

markedly impact the predicted fluxes and should there-

fore be carefully designed [78].

Recently, more involved methods have been introduced

to partly address these challenges. For example, one

study introduced temporal dynamics to account for the

competition between Geobacter sulfurreducens and Rhodo-
ferax ferrireducens and to predict the relative proportion of
Current Opinion in Biotechnology 2013, 24:810–820
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the community members at loci with different environ-

mental conditions [79]. Taking a different perspective,

Klitgord and Segrè [80] developed a novel algorithm to

explore environmental conditions that may induce sym-

biosis between two species, providing exciting insights

into the evolution of microbial communities. Extending

such models to more than two species has also proved

challenging, and only very few studies have gone beyond

a two-species interaction model. Taffs et al. explored

several methods for applying elementary mode analysis

to a community of three distinct microbial guilds: oxy-

genic phototrophs, filamentous anoxygenic phototrophs,

and sulfate-reducing bacteria [77��]. More recently, a

multi-level optimization scheme was employed to study

trade-offs between individual and community level fit-

ness, making community growth a primary objective and

individual growth a secondary (and potentially subopti-

mal) objective [81]. This method was used to elucidate

the extent and direction of inter-species metabolic trans-

fer in both two-species and three-species communities.

Future work in this area will be of immense value to the

field.

Modeling community-level metabolism
While the study of species interactions within a micro-

biome is crucial for understanding community function

and dynamics, it is only one of the components required

for the development of a comprehensive model of the

community. Multi-species models that focus on the inter-

actions between species may fail to explain, for example,

how variations in gene or species composition affect the

overall metabolic activity of the microbiome or how the

microbiome as a whole impacts the host. Such questions

call for an alternative approach to model the microbiome,

wherein the entire community is regarded as a single

biological entity, ignoring both the boundaries between

species and the species of origin of each gene. In this

supra-organismal approach [82], metabolic pathways are

assumed to function at the community-level, eliminating

species-level compartmentalization and allowing metab-

olites to transfer freely between species and to interact

directly with the microbiome environment.

Microbiome-wide profiling of enzymatic gene content

and community-level characterization of metabolic

potential are common in comparative metagenomics.

Using a variety of statistical approaches, the prevalence

of certain metabolic pathways in the metagenome have

been shown to correlate with various host states [9�,16,17]

and environmental factors [83,84]. A number of tools have

been developed to analyze and to visualize metagenomic

data and to assess microbiome-wide presence and abun-

dance of various metabolic pathways [85–87]. Notably,

some tools go beyond simple tallies of gene components

and utilize information about metabolic pathway topology

to infer the presence of missing enzymes or to correct the

abundance of others. For example, HUMAnN [88��], the
Current Opinion in Biotechnology 2013, 24:810–820 
primary tool used for metabolic analysis of the Human

Microbiome Project data [11��], applies such methods to

translate the relative abundance of sets of enzymatic

genes within metagenomic samples to pathway coverage.

Similarly, MetaPath [89�] overlays metagenome-wide

abundance data onto global metabolic pathway structures

to heuristically detect differentially abundant pathways

across samples.

Such pathway-based analyses are not only powerful and

effective tools for studying the functional composition of

the microbiome but are also an important first step

towards the reconstruction of full-scale models of com-

munity-level metabolism. Yet, relatively few studies go

beyond characterization of pathway abundances and

directly take into account the relationships between

the various pathways or the overall organization of the

metabolic network. The most extensive effort to date to

generate and analyze a microbiome-wide metabolic

model focused on the gut microbiome and its impact

on obesity and on IBD [22��]. Specifically, shotgun

metagenomic data was used to reconstruct com-

munity-level metabolic networks and to examine the

position of disease-associated enzymatic genes in the

network, as well as the topology of the network as a

whole. This metagenomic systems biology framework

revealed that enzymes whose abundances in the meta-

genome are associated with host health tend to occupy

positions at the perimeter of the network. This finding

suggests that disease-associated microbiomes differ in

the way they interact with the host environment rather

than in core metabolic processes. Moreover, by con-

structing host state-specific community-level metabolic

networks, this study further demonstrated that networks

derived from obese individuals are significantly less

modular than those derived from lean individuals,

suggesting that clinically relevant differences in the

microbiome  may be associated with distinct systems-

level organization. Such network-based approaches are

also gaining traction in studying community-level

metabolism beyond the human microbiome and across

environmental microbiomes. For example, a recent

study [90�] used a network-based method to infer the

turnover of metabolites from marine metagenomic

samples from the Western English Channel and demon-

strated an association between predicted relative meta-

bolic turnover and seasonal changes of various

environmental parameters. Integration with pathway

based tools such as those mentioned above may further

improve community-level models, addressing the

sampling and annotation errors inherent to all metage-

nomic studies. Ultimately, such modeling efforts, taking

a systems-based approach to study the microbiome as a

whole, provide valuable insights into the contribution of

functional elements to microbiome potential and into

the functioning of the microbiome within the context of

an ecosystem [23,24].
www.sciencedirect.com
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Modeling host-microbiome metabolic
interaction
Modeling the human microbiome, and for that matter

modeling any host-associated microbiome, is further com-

plicated by the tight commensal relationship between the

microbiome and its host and by the dynamic nature of a

host-derived environment [91]. Host–microbiome inter-

actions play a key role in host metabolism [92], immune

response [93,94], development [95], and drug response

[96]. Moreover, gut microbes are crucial for processing

otherwise inaccessible nutrients and for harvesting

energy from the host diet [97,98]. Clearly, some meta-

bolic, energetic, temporal, and spatial considerations may

differ significantly between microbe–microbe models and

host–microbe models. These considerations may affect

the choice of compartmentalization scheme or of other

design elements used when constructing these models.

Yet, at its heart, the approach taken for modeling host–
microbe metabolic interactions is similar to the one

described above for modeling microbial interspecific

interactions, and usually involves some integration be-

tween a microbial metabolic model and a model of the

host metabolism. Fortunately, metabolic models of the

human host have already been introduced [99], as well as

tissue-specific models of human metabolism [100,101].

Several studies have already used this approach to study

the interaction between the host and specific host-associ-

ated microbial species. Comparing the topology of the

host metabolic network with that of a symbiont or a

parasite can reveal novel relationships or complementa-

rities in metabolic functions. For example, gaps ident-

ified in some essential pathways of an insect host were

found to be compensated by the capacity of an endo-

symbiont [102]. More complex topological methods for

finding metabolic complementarities have made use of

graph-based algorithms to predict the extent of nutri-

tional support between the metabolic networks of a host

and a parasite [103�]. Predictions based on this frame-

work have been shown to closely parallel inter-species

relationships, providing new insight into evolutionary

and ecological trends. A related approach was used to

obtained a comprehensive view of the metabolic

exchanges between two endocytobionts residing in the

same insect host (see also above) by determining the set

of exogenously acquired nutrients needed to synthesize

the metabolites involved in symbiotic interactions [62�].
Constraint-based approaches have also been applied to

the study of host–microbe interactions. For example,

integrating two genome-scale network reconstructions,

adding interfacial constraints, and altering the objective

function to reflect a pathogenic lifestyle, a recent study

was able to accurately depict different types of M. tuber-
culosis infection in a human host [104]. Another study

captured cross-feeding and competition between a

mouse host and a commensal microbe via a combined

constraint-based model with the addition of a joint
www.sciencedirect.com 
external compartment facilitating metabolite exchange

[105��]. These studies, again, speak to the challenge of

designing an appropriate compartmentalization scheme

that most accurately reflects inter-species dynamics. For

an in depth review of constraint-based methods in the

context of host–microbe interactions, see Ref. [106].

Alternatively, one can model the interaction between

the host and the microbiome as a whole, following the

supra-organism paradigm discussed above. Though

such efforts are currently  scarce, the rapidly accelerat-

ing pace of studies generating microbiome-wide geno-

mic, transcriptomic, and metabolomic data may provide

the foundation for continued development in this area.

A preliminary attempt to model the human–micro-

biome interactome was recently introduced, in which

a microbiome-wide metabolic network was used to

identify sets of bacteria-specific metabolites known

to interact with human protein complexes [107]. Inter-

estingly, more than half of these interactions involved

complexes associated with disease and many of the

metabolites identified were highly similar to known

small-molecule drugs, suggesting a significant role for

the microbiome in both host metabolic activity and in

maintenance of host health. Integrating such com-

munity-level models with tissue-specific models of

human metabolism [100,101] will allow us to further

study metabolic dependencies between the micro-

biome and the host and to better predict the impact

of the microbiome on human health.

Putting it all together: future directions and
challenges
The modeling frameworks described above provide valu-

able insights into the capacity of the microbiome and

illuminate various facets of the human microbiome sys-

tem. These studies show great promise and highlight

some of the potential, as well as the challenges, in

modeling different aspects of the microbiome’s metabolic

processes. Clearly, however, a fully comprehensive model

of the microbiome, encompassing its activity, dynamics,

and impact on the host, must not only utilize these various

modeling approaches but also integrate them across

temporal and organizational scales. Such an integrative

model should account, for example, for the way species

interactions affect the abundances of the various species,

and ultimately the functional composition of the

microbial supra-organism, over time. Similarly, the

activity of the microbiome as a whole and its interaction

with the host in turn affect the biochemical environment

of the gut and the context in which microbiome species

function. Finally, the host diet, metabolism, and immune

response exert strong selective pressures on the micro-

biome, further affecting its species composition. At longer

time scales, the above pressures and interactions may

additionally induce genomic adaptation of resident

species, resulting in strain-level variation and altering
Current Opinion in Biotechnology 2013, 24:810–820
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community-wide abundances of specific genes [108].

Modeling and integrating such evolutionary dynamics

and their potential functional effects on the metabolic

system remains an outstanding challenge. Ultimately

though, a predictive and clinically relevant model of

the microbiome can only be achieved by considering

such complex dependencies and their impact.

Recently introduced multi-scale models of microbe–
microbe interactions are a promising first step in this

direction. Some models, for example, apply a multi-level

and multi-objective optimization  scheme [81] or

temporal dynamics [79,109] to account for the trade-

off between individual species and the community and

for the changes in the relative abundances  of the inter-

acting species. An additional constraint-based model has

recently been constructed to study the interaction be-

tween a host and a representative gut microbe [105��].
This model was used to characterize diet-dependent

changes in uptake and secretion rates and was shown

to successfully predict growth dependencies and cross

feeding. Multi-scale models of human metabolism, inte-

grating cellular scale models with whole-body physi-

ology, have also been introduced [110]. Still, a

comprehensive framework that integrates microbe–
microbe and host–microbe interactions, that accounts

for the interaction of the microbiome as a whole with

the host, and that can be scaled up to effectively model

the vast number of species comprising the human micro-

biome, is lacking.

Moreover, it should be noted that our focus in this review

is centered primarily on models of metabolism. This is

potentially the most clinically relevant process, especi-

ally in understanding the capacity of the gut microbiome,

and the one for which modeling frameworks are relatively

well established. Other cellular processes, however,

clearly contribute as well to the activity of the micro-

biome and to its overall influence on the host. Modeling

such processes and integrating them with metabolic

models is challenging. For individual species, a few

multi-scale models that integrate metabolism with

macromolecular synthesis [111] or with regulation

[112] are already available. Most notably, a remarkable

effort to computationally model the entire life cycle of

the human pathogen Mycoplasma genitalium was recently

introduced [113��]. This multi-scale model integrates 28

different cellular processes, capturing every facet of the

biology of this species and provides the first whole-cell

model of a living organism. Taking a similar approach to

model all the species in the human microbiome and their

interactions is clearly a mammoth task. Many gut dwell-

ing microbes have not yet been identified, let alone

sequenced or studied extensively. Yet, such complete

single-species models provide a promising glimpse into

the potential of in silico modeling of complex biological

systems.
Current Opinion in Biotechnology 2013, 24:810–820 
Conclusions and opportunities
Clearly, there is still much work ahead to achieve a

comprehensive multi-scale model of the human micro-

biome. The works summarized above, however, indicate

definite progress, with research already moving beyond

the consideration of genes or species in isolation and

towards a clearer focus on various systems-level aspects

of the microbiome. Looking ahead, the implications of

such efforts are tremendous. The ability to predict the

specific effect of nutritional additives [114,115], drug

treatments [116], or microbial supplements [117,118]

on the metabolic activity of the microbiome will enable

both better diagnostics and intervention in cases of

medical importance. Initial promise stemmed from

reports of disease elimination through complete micro-

biome transfer [119], but recently more targeted therapies

have been introduced as well [120–122]. A more

informed, integrated view of microbial interactions would

make such procedures safer, more cost-efficient, and

ultimately more effective. Malnourishment could be

allayed by the administration of a cocktail of probiotic

species carefully designed with in silico support for their

sustained growth and activity in the human gut [123].

Similarly, early biomarkers for a digestive disorder could

consist of disrupted cross-talk between microbial species

or genes, revealed only by explicitly modeling their

expected interactions.

Many of the resources required for continued progress

are already here and the foundations have been laid.

Multiple channels  of data from the human microbiome

are available, can be easily accessed via specialized

databases [10,85,87], and analyzed by multiple tools

already in place [88��]. Similarly, thousands of anno-

tated microbial genomes are now available [124], open-

ing the door to the reconstruction of numerous

genome-scale models. Integration of transcriptomic,

proteomic, or regulatory information may further

improve the reconstruction and validation of such

models [125]. Network-based and constraint-based

modeling frameworks have been used extensively to

study individual microbial species, and additional fra-

meworks and analytical techniques are constantly

being developed. Future research on community mod-

eling will undoubtedly make use of this vast array of

systems and pathway-based tools originally designed

for single organisms.

The work presented above represents significant pro-

gress in just a few short years. We hope that high-

lighting current work in this sphere will call attention

to this promising mode of research and inspire further

innovation in this direction. Ultimately, continued

research in this field will bring us closer to a prin-

cipled understanding of the microbiome and will

facilitate informed manipulation of this complex

system.
www.sciencedirect.com
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