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ABSTRACT

The topology of metabolic networks can provide insight not only into the metabolic processes

that occur within each species, but also into interactions between different species. Here,

we introduce a novel pair-wise, topology-based measure of biosynthetic support, reflecting

the extent to which the nutritional requirements of one species could be satisfied by the

biosynthetic capacity of another. To evaluate the biosynthetic support for a given pair

of species, we use a graph-based algorithm to identify the set of exogenously acquired

compounds in the metabolic network of the first species, and calculate the fraction of this

set that occurs in the metabolic network of the second species. Reconstructing the metabolic

network of 569 bacterial species and several eukaryotes, and calculating the biosynthetic

support score for all bacterial-eukaryotic pairs, we show that this measure indeed reflects

host-parasite interactions and facilitates a successful prediction of such interactions on a

large-scale. Integrating this method with phylogenetic analysis and calculating the biosyn-

thetic support of ancestral species in the Firmicutes division (as well as other bacterial

divisions) further reveals a large-scale evolutionary trend of biosynthetic capacity loss in

parasites. The inference of ecological features from genomic-based data presented here lays

the foundations for an exciting “reverse ecology” framework for studying the complex web

of interactions characterizing various ecosystems.

Key words: biosynthetic support, host-parasite, metabolic networks, reverse ecology, seed set

species interaction.

1. INTRODUCTION

IN RECENT YEARS, RESEARCHERS HAVE COME TO REALIZE that a network-based representation of

various biological systems encapsulates many of the essential properties of these systems. Such networks

provide valuable insights into the system’s function and dynamics and often lend themselves to well-

established tools and algorithms borrowed from graph theory (Alon, 2003), which, interestingly, has deep

roots in the analysis of chemical reactions (Bonchev and Rouvray, 1991). In particular, a wide range of

computational approaches have been applied to study topological characteristics of metabolic networks and

their bearings on various functional properties, including scaling (Jeong et al., 2000), regulation (Stelling

et al., 2002), universality (Smith and Morowitz, 2004), robustness (Deutscher et al., 2006), and adaptation

1Department of Biology, Stanford University, Stanford, California.
2Santa Fe Institute, Santa Fe, New Mexico.

191



192 BORENSTEIN AND FELDMAN

(Borenstein et al., 2008; Kreimer et al., 2008). Further analyses have also considered the environmental

context in which each network functions and examined the effect of the biochemical environment on

various metabolic processes (Almaas et al., 2004; Ibarra et al., 2002).

The analysis of metabolic networks, however, can provide valuable insight not only into the function

and dynamics of the metabolic process, but also into the biochemical environment in which each species

evolved. This is because interactions with the environment throughout the evolutionary process and

selection pressures that the environment exerts on the evolving metabolic network affect the structure of the

network and often produce a detectable topological “signature.” Following this ‘reverse ecology’ approach

(Parter et al., 2007), we previously developed a computational framework designed to extract large-scale

ecological insights from the analysis of the topology of metabolic networks (Borenstein et al., 2008). In

this framework, the topology of a given network is analyzed using a novel graph theory-based algorithm,

to infer the set of compounds that are exogenously acquired. This set, termed the ‘seed set’ of the network

(Raymond and Segre, 2006), reflects the metabolic interface between the organism and its surroundings,

approximating its effective biochemical environment. We constructed and analyzed the metabolic networks

of 478 species and identified their seed sets, presenting a comprehensive large-scale reconstruction of

such metabolic environments. We further showed that the seed sets’ composition strongly correlates

with several properties characterizing the species’ habitats and agrees with observations concerning major

adaptations. Phylogenetic analysis of the seeds also revealed the complex dynamics governing the evolution

of metabolic networks and the gain and loss of biosynthetic capacity. This framework thus enables tracing

the evolutionary history of both metabolic networks and the interaction of these networks with their

environments.

In reality, however, the biochemical environment of one species is often affected (or even fully de-

termined) by the metabolic context of another species (Brown et al., 2001). This is clearly the case in

obligate intracellular parasites, where environments are fully determined by the internal biochemical state

of their hosts. Such host-parasite relationships, as well as other forms of species interactions, clearly shape

the selection pressures governing the evolution of each species (Dybdahl and Lively, 1998), and could

markedly affect the structure of their metabolic networks. Therefore, these interactions are likely to have a

unique signature in the joint topology of the species’ metabolic networks, providing a computational, large-

scale method for characterizing and detecting ecological patterns. For example, many obligate intracellular

parasites have lost a considerable number of biosynthetic genes, and rely on their host for nutrients they

cannot synthesize (McCutcheon and Moran, 2007; Shigenobu et al., 2000; Stephens et al., 1998). This will

be manifested as an exceptionally high number of externally acquired compounds in the parasite’s network

that can be synthesized by the network of the host.

In this paper, we build upon the computational framework described above and formulate a novel

pair-wise, topology-based measure of biosynthetic support, reflecting the complementarity between the

nutritional requirements of one species and the biosynthetic capacity of another. We demonstrate that this

measure correlates with host-parasite interactions on a large-scale and provides valuable insights into their

evolution.

2. RESULTS

We constructed the metabolic networks of 569 bacterial species, based on a large-scale metabolic

database (Kanehisa et al., 2006). Using a computational “reverse ecology” algorithm developed previously

(Borenstein et al., 2008), we identified in each network the set of compounds that are exogenously acquired

(i.e., the seed set of the network). We also retrieved data describing the natural habitat of each bacterial

species and labeled each species as either a parasite or a free living bacteria. We further collected new

data and labeled each parasitic species as being a parasite of either mammals, insects, or plants.

We first compared the overall size of the networks (a measure of biosynthetic capacity) and the size of

the seed sets (a measure of environmental variability) (Parter et al., 2007) in parasites versus free-living

bacteria. We find that generally parasitic bacteria not only have significantly smaller networks than free-

living bacteria (as expected), but that they also extract fewer compounds from their environments (Table 1).

This is in agreement with our findings in a previous analysis (Borenstein et al., 2008) for a substantially

smaller set of species. These findings suggest that intracellular bacteria that live in highly predictable and
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TABLE 1. SIZE OF NETWORKS AND SEED SETS IN FREE-LIVING

VERSUS PARASITIC BACTERIA

Network size Seed set size

Free-living 819.6 (242.9) 188.6 (56.4)

Parasites (all) 701.5 (312.6)b 163.8 (70.8)b

Mammal parasites 677.8 (287.0)b 158.0 (61.7)b

Insect parasites 448.8 (180.0)c 112.7 (40.2)c

Plant parasites 993.4 (432.5)a 239.6 (106.5)a

The size of a network is measured by the number of compounds in the network.

The size of the seed set is estimated by the number of source components. Each entry

in this table denotes the average size and the standard deviation (in parentheses).

Footnote symbols indicate the p-value obtained in a Wilcoxon rank sum test,

comparing the focal values to those associated with free-living bacteria.
ap < 0:01.
bp < 10�6.
cp < 10�13.

fixed environments, and potentially could rely on these environments for the supply of numerous required

metabolites, take up a relatively small number of metabolites in comparison to bacteria that have to cope

with a wide range of environmental niches. Interestingly, focusing on parasites of specific hosts, we find

that this trend does not hold for plant parasites, which appear to possess markedly larger networks and

seed sets than other organisms. This accords with biological observations concerning at least two major

families of plant parasites: The nitrogen fixing Rhizobia species, which are characterized by extremely

complex and diverse metabolism (and remain, at least part of the time, exterior to the plant cell, interacting

directly with a soil environment) (Lodwig and Poole, 2003), and the xylem-inhabiting bacteria, such as

Xylella fastidiosa, which exhibit extensive biosynthetic capabilities in an environment of the nutrient-poor

xylem sap (Simpson et al., 2000).

Next, we introduce a new pair-wise, topology-based measure of biosynthetic support, which aims to

capture the extent to which the nutritional requirements of a potential parasite are met by the biosynthetic

capacity of a potential host. Formally, given a pair of species b and e, the biosynthetic support of b in

e is defined as the fraction of exogenously acquired compounds required by b (i.e., its seed set) that

occur in the metabolic network of e. As obligatory parasites often lose the ability to synthesize certain

compounds, and instead rely on their hosts for the supply of these compounds, biosynthetic support values

obtained for true host-parasite pairs are expected to be higher than those obtained for a random pair of

species. Here, we wish to utilize this novel measure, which accounts not only for the interactions between

organisms and their environments (as in Borenstein et al., 2008), but also for interactions between pairs of

species, and to examine whether this large-scale computational approach can indeed provide an informative

characterization of host-parasite interactions.

To this end, we consider three representative eukaryotic hosts: human, fruit fly, and Arabidopsis. We

constructed the metabolic networks of these eukaryotic species, and calculated the biosynthetic support of

all the bacterial species included in our analysis in these organisms. We first compared the biosynthetic

support values obtained for parasites versus free-living bacteria. We find that, while the average biosyn-

thetic support of free-living bacteria in the metabolic network of human is 0.694, the average biosynthetic

support of parasites is significantly higher (0.751; p < 10�13; Wilcoxon rank sum test). A similar trend

is observed for biosynthetic support values in the metabolic network of fruit fly; the average biosynthetic

support of parasitic bacteria is significantly higher that that of free-living bacteria (0.701 and 0.640,

respectively; p < 10�11; Wilcoxon rank sum test), and in Arabidopsis (0.725 for parasites vs. 0.687 for

free-living; p < 10�6; Wilcoxon rank sum test). This difference between parasites and free-living bacteria

goes beyond the difference in the size of networks and seed sets reported above, as demonstrated by the

markedly lower p-values obtained by the Wilcoxon rank sum test for the biosynthetic support score (and

compare with Table 1; see also the improved prediction accuracy below). Moreover, it should be noted that

the biosynthetic support scores are normalized for the size of the seed set, and therefore, in an important

sense, represent novel information.
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To further examine the overlap between the characteristics encapsulated in the biosynthetic support scores

and other, global features of the network, we calculated the correlation between these scores and other

network based measures. We find a significant negative correlation between the biosynthetic support score

(in human) and the number of reactions in the network, as well as with the size of the seed set (�0.637,

and �0.7 respectively; p < 10�300 for both; Spearman rank correlation). These moderate correlation

coefficients suggest that while biosynthetic support is linked to other global properties of the network, it

may still encapsulate fundamentally different and independent information. Furthermore, these correlations

are markedly different in parasites versus free-living bacteria: Specifically, the coefficients of the correlation

with the number of reactions and with the size of the seed set in parasites are significantly higher than

those obtained for free-living bacteria (�0.788 and �0.807 vs. �0.494 and �0.578; p < 10�300 for both;

Spearman rank correlation).

It is also instructive to examine the distribution of biosynthetic support scores in human and in fruit

fly obtained for parasites and for free-living bacteria. Although these distributions are relatively broad, the

biosynthetic support scores obtained for parasites clearly have a propensity toward higher values (Figs. 1A

and 1B). Remarkably, this trend becomes even more prominent when we consider only those parasites that

FIG. 1. The distribution of biosynthetic support scores for various bacterial species. (A) The biosynthetic support of

free-living bacteria, parasites, and mammal parasites alone, in the metabolic network of human. (B) The biosynthetic

support of free-living bacteria, parasites, and insect parasites alone, in the metabolic network of fruit fly. (C) The

biosynthetic support of free-living bacteria, parasites, and plant parasites alone, in the metabolic network of Arabidopsis.

(D) Scatter plot of biosynthetic support scores in human versus fruit fly. To highlight the similarities and differences

between the scores in these hosts, the scores in each host were ordered and the ranks were used instead of the actual

values.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2008.06TT&iName=master.img-004.jpg&w=423&h=362
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are labeled as infecting hosts that are phylogenetically close to the host species we used to calculate the

biosynthetic support scores; mammal parasites display a slightly more skewed distribution in human, and

insect parasites display a markedly more skewed distribution in fruit fly (the relatively weaker effect in

mammal parasites may be attributed to the fact that most of the parasites in our set—179 out of 212—are

labeled as mammal parasites). As before, plant parasites exhibit a fundamentally different trend, with many

species having very low biosynthetic support scores, indicating that a large group of these parasites do not

rely strongly on their hosts for the supply of the various nutrients they require (Fig. 1C). A scatter plot of

biosynthetic support scores in human versus fruit fly (Fig. 1D) further demonstrates the overall similarities

between the scores obtained in these two hosts (although, as also demonstrated below, host specificity can

still be predicted to a certain extant). It also appears that the highest biosynthetic support scores are often

obtained for bacterial species that infect both mammals and insects (e.g., insect-borne human pathogens).

This increased biosynthetic support of parasites in various hosts can be used to predict parasitic species.

This is achieved by defining a biosynthetic support threshold, above which a bacterial species would

be classified as a parasite. To evaluate the performance of this method, we tested its predictive power

in classifying the set of 569 bacterial species included in our analysis. For comparison, we also predicted

parasites versus free-living bacteria using the size of the networks and the size of the seed sets (i.e., defining

a minimal size, below which a bacterial species is classified as a parasitic species). Figure 2 demonstrates

the quality of each of these predictors, using precision versus recall and receiver operating characteristic

(ROC) curves. Evidently, biosynthetic support-based predictions are superior to predictions which are

based on the size of the network or on the size of the seed set. Moreover, considering the simple network

model used in our analysis, and the incompleteness of the data, the resulting biosynthetic support-based

predictions are remarkably accurate (especially for insect parasites). Figure 2B further demonstrates the

success of host-specific parasite prediction, based on the biosynthetic support scores obtained in different

potential hosts (considering the results shown above for plant parasites, we focus here only on human and

fruit fly as hosts).

Finally, we wish to examine the changes in biosynthetic support scores throughout the evolutionary

process. We first focus on the bacterial division of Firmicutes, which includes many host-associated species.

Using a well-established, sequence-based phylogenetic tree (Ciccarelli et al., 2006) to relate the various

Firmicutes species in our dataset and to reconstruct the metabolic networks of ancestral species across this

tree, we can calculate the biosynthetic support of both extant and ancestral species and compare it with

FIG. 2. Accuracy of parasite prediction. (A) Precision versus recall of parasite prediction based on network size, seed

set size, and biosynthetic support scores in human and in fruit fly. (B) Receiver operating characteristic (ROC) curves

for parasite prediction. In addition to predicting all parasites, host-specific parasite prediction is also examined. Mammal

parasites are predicted according to their biosynthetic support in human. Insect parasites are predicted according to

their biosynthetic support in fruit fly. For comparison, ROC curves are also presented for prediction of all parasites

based on either the size of the network or the size of the seed set. The areas under the ROC curves are 0.623, 0.632,

0.691, 0.678, 0.699, and 0.898, respectively (following the order in the legend).

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2008.06TT&iName=master.img-005.png&w=426&h=181
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FIG. 3. Biosynthetic support scores of 39 extant and 38 ancestral Firmicutes species. Extant species are labeled

according to KEGG organism codes. The gray scale corresponds to biosynthetic support scores in current species.

their phylogeny (Fig. 3). We find a significantly and markedly high correlation between the biosynthetic

support scores of the various species (extant and ancestral) and their distances from the common ancestor

of Firmicutes (0.795, p < 10�300; Spearman rank correlation). Limiting this analysis only to ancestral

species (to control for potential differences between extant networks and ancestral reconstructed networks),

a comparable correlation is still obtained (0.788, p < 10�8; Spearman rank correlation). Repeating this

analysis in other divisions that include many parasitic species (and for which enough species are included

in our analysis) reveals a similar trend. Specifically, we find a marked correlation between the biosynthetic

support scores of extant and ancestral species and their distances from their common ancestor also in

Gamma-proteobacteria, Alpha-proteobacteria, and Actinobacteria (0.812, p < 10�300; 0.67, p < 10�3;

0.686, p < 10�3, respectively). This finding suggests that overall (at least in these large divisions of

parasitic species) biosynthetic support tends to increase from ancestral species to descendants. This is in

agreement with a gradual adaptation of parasites to their host environments, and the loss of biosynthetic

capacity (McCutcheon and Moran, 2007; Moran and Mira, 2001).

3. DISCUSSION

This study introduces a novel measure of biosynthetic support and demonstrates how this measure

relates to host-parasite interactions. Specifically, parasitic species are shown to have higher biosynthetic

support scores in several hosts than free-living bacteria. Integrating this method with phylogenetic data
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further reveals an evolutionary trend of biosynthetic capacity loss across numerous parasites (McCutcheon

and Moran, 2007; Moran and Mira, 2001), providing a first computational, large-scale characterization of

this trend.

It should be noted that our measure is based on network topology alone, ignoring several other quan-

titative properties of metabolic reactions (e.g., stoichiometry, metabolic rates, and regulation). We further

assume a static model, where all pathways are active, ignoring dynamic regulation and dependency on

environmental conditions. In this sense, the seed set and biosynthetic support score of a given species can

be conceived as representing its overall metabolic potential. More involved models (such as constraint-based

stoichiometric models) (Edwards and Palsson, 2000; Ibarra et al., 2002), may provide additional insights

into the metabolic interaction between species (Rokhlenko et al., 2007). A recent study, for example,

constructed a stoichiometric model of a simple, two-species mutualistic system (Desulfovibrio vulgaris

and Methanococcus maripaludis), and successfully predicted metabolic fluxes and growth rates (Stolyar

et al., 2007). Yet, these complex, manually curated models are available for only a handful of species. In

contrast, topology-based models can be readily reconstructed for hundreds of species, and analyzed using

a plethora of tools borrowed from graph theory and complex network analysis. Such studies therefore

facilitate the detection of large-scale patterns across numerous species.

Another potential caveat of any study that is based on large-scale metabolic data (such as those obtained

from KEGG) stems from missing and inaccurate annotation. These data are often based on automated

comparison-based methods of genome annotation (Kanehisa et al., 2006) and are associated with high

levels of noise and incompleteness (Green and Karp, 2006). This can affect the prediction of seed sets

and consequently the calculation of biosynthetic support scores. We previously examined the effect of

missing or erroneous data on seed prediction and showed that the composition of the seed set is fairly

robust to perturbations of the raw metabolic data (Borenstein et al., 2008). Moreover, as biosynthetic support

scores reflect the complementarity between two networks, a consistent bias in annotation (such as a missing

annotation of an entire metabolic pathway), may in fact still allow comparison between the scores of various

species. Still, considering the inherent incompleteness associated with these data, our main goal in this

paper is to demonstrate large-scale patterns, such as the complementarity between hosts and parasites and

the loss of biosynthetic capacity across evolutionary timescales, rather than to provide specific predictions

that concern specific species. As such, the findings presented above for various prediction methods (e.g.,

using ROC curves) serve to facilitate a comparison between the information content of various measures,

and to shed light on the way in which the co-evolution of hosts and parasites, as well as the continuing

adaptation of parasites to their hosts, are manifested in the topology of metabolic networks.

The method presented in this paper can assist in preliminary characterization of newly detected parasites

and can be utilized to identify patterns of potential variation in hosts or in transmission vectors. Further

phylogenetic analysis has the potential to provide important insights into the evolutionary dynamics that

govern the continuing race between parasites and hosts (Dybdahl and Storfer, 2003; Maynard Smith, 1976;

McCutcheon and Moran, 2007; Sole et al., 1999). Of special interest is the use of network topology-based

analysis for the characterization of the complex web of interactions within diverse microbial communities

(Schloss and Handelsman, 2005), ranging from those living on sunken whale skeletons (Tringe et al.,

2005) to those inhabiting the human gut (Eckburg et al., 2005). Advances in metagenomics—the analysis

of genetic material recovered from environmental samples—are expected to give rise to an explosion of data

in coming years and call for system-level computational analyses of that sort. As such, the “reverse ecology”

approach presented here, inferring ecological insights from genomic-based data, is a promising vehicle for

addressing key ecological questions in the post-genomic era (Borenstein et al., 2008; Parter et al., 2007).

4. METHODS

4.1. Metabolic networks construction and relevant data

Data concerning the metabolic reaction of a large array of species were retrieved from the KEGG

database (Kanehisa et al., 2006), release 45.0 (January 1, 2008). A list of the main reactions in the database

was retrieved from the file reactionnmapformula.lst in the KEGG LIGAND database. This file also

lists for each reaction its definition (i.e., the substrates and product compounds) and its directionality (if
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known) in each pathway in which it participates. The chemical compounds are limited to main reactants.

The list of reactions present in each species (and the pathways in which they are found) was retrieved

from the rn files in the PATHWAY database. Using these data, the metabolic network of each species was

reconstructed. We represent each network as a directed graph where nodes denote compounds and edges

denote reactions. Formally, a directed edge from compound a to compound b indicates that compound a

is a substrate in some reaction which produces compound b (i.e., for each given reaction, all the nodes

that represent its substrates are connected by directed edges to all the nodes that represent its products). In

total, the metabolic networks of 782 species, of which 595 are bacterial species, were reconstructed. We

further discarded species that have less than 100 reactions, leaving a total of 569 bacterial species. We also

constructed merged networks for mammals, insects, and plants, representing the union of the metabolic

networks of all the species in each of these phyla.

Data concerning various environmental properties of Prokaryotes were obtained from the prokaryotic at-

tributes table of the NCBI Genome Project (www.ncbi.nlm.nih.gov/genomes/lproks.cgi). This table specifies

for each species the basic habitat in which the organism is commonly found and specifically whether it is

host-associated (i.e., the organism is often or obligately associated with a host organism), aquatic, terrestrial,

specialized, or multiple (i.e., the organism can be found in more than one of the above environments). For

the purpose of this study we considered all species that were defined in this dataset as host-associated as

parasites, and all others as free-living bacteria. We also conducted an extensive literature search to identify

the potential host of each parasitic species. Specifically, we defined species that infect humans or other

mammals as mammal parasites, those that infect various insects or other arthropods as insect parasites, and

those that infect plants as plant parasites. It should be noted that a parasitic species can be, for example,

both a mammal-parasite and an insect-parasite, as is the case for insect-borne human pathogens.

4.2. Identifying seed compounds

Seed compounds are the set of compounds that, based on the network topology, are exogenously acquired.

Formally, we define the seed set of a metabolic network (Raymond and Segre, 2006) as the minimal subset

of the network’s compounds that cannot be synthesized from other compounds in the network and whose

existence permits the production of all other compounds in the network (Borenstein et al., 2008). Such seed

sets form ecological “interfaces” between metabolic networks and their surroundings, and can serve as a

proxy for the biochemical environment of each species. The seed set of a given network can be identified

as follows: (i) The network is decomposed into its Strongly Connected Components (Aho et al., 1974) (a

strongly connected component is a maximal set of nodes such that for every pair of nodes u and v there

is a path from u to v and a path from v to u). (ii) The strongly connected components form a Directed

Acyclic Graph (DAG) whose nodes are the components and whose edges are the original edges in the graph

that connect nodes in two different components. (iii) Components without incoming edges and at least

one outgoing edge are identified and defined as source components. (iiii) Each source component forms a

collection of candidate seed compounds, where a viable seed set must include exactly one compound from

each source component (and no other compounds). Each possible selection of one compound out of each

source component yields a seed set solution that satisfies the above definition. Further details concerning

the seed compounds detection algorithm and its validation can be found elsewhere (Borenstein et al., 2008).

4.3. Calculating biosynthetic support scores

The biosynthetic support score represents the extent to which the metabolic requirements of a potential

parasitic organism can be supported by the biosynthetic capacity of a potential host. Formally, we define

S e
b
—the biosynthetic support of a bacterial species b in a eukaryotic species e—as the fraction of the

seed set of b that can be found in the metabolic network of e. As seed sets cannot be fully determined

in cases where a source component comprises more than one compound (see Section 4.2), we define

the biosynthetic support as the maximal support that can be obtained across all viable seed sets. This is

measured by calculating the fraction of the source components of b, in which at least one of the compounds

can be found in the network of e. Additionally, we examined a more complex version of this measure,

where highly prevalent seeds (those that are exogenously acquired by many organisms and that therefore

may not carry significant information on the effective biosynthetic support value) were initially discarded

form the analysis. This omission, however, did not qualitatively affect the results reported in this paper.
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We calculated the biosynthetic support of each bacterial species in several eukaryotic species. In this

study we focus only on the support obtained in H. sapiens (as a representative mammalian host), in

D. melanogaster (as a representative insect host), and in A. thaliana (as a representative plant host). Using

other representative hosts from each class did not qualitatively change the results presented in this paper

(except for differences that stem from annotation level). This suggests that metabolic data alone (and

specifically, metabolic network topology) are not sufficient to distinguish parasites of different mammals

(or different insects), without potentially integrating other data (e.g., immune response). We also calculated

the support of each bacterial species in the merged networks of mammals, insects, and plants. In general,

the results obtained with these merged networks (not shown here) demonstrated qualitatively similar trends,

but were markedly more noisy.

4.4. Phylogenetic analysis and reconstruction of ancestral metabolic networks

We consider a well-established, sequence similarity-based tree (Ciccarelli et al., 2006), to identify

the phylogenetic relations between the species included in our analysis. Specifically, this tree covers

39 Firmicutes species. We followed Borenstein et al. (2008), using the presence/absence pattern of each

reaction across extant species and applying Fitch’s small-parsimony algorithm (Fitch, 1971), to determine

the presence/absence of each reaction in the internal nodes of the tree and to reconstruct the ancestral

metabolic networks. As ancestral networks are reconstructed based on reactions that were detected in extant

species, this analysis is not affected by bias in homology detection that may stem from different distances of

various ancestral species from well annotated species. It should also be noted that the biosynthetic support

score is normalized by the size of the seed set, and is therefore not likely to be affected by variation in

gene detection probabilities. We also used this tree to measure the distance of each extant and ancestral

species from the last common ancestors of Firmicutes. As most Firmicutes infect mammals, biosynthetic

support scores for these species were calculated in relation to the human metabolic network. A similar

analysis was also performed for all major bacterial divisions. To obtain sufficient statistics, this analysis

was limited to divisions that included at least 10 species in our dataset.
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