Balance Trees Reveal Microbial Niche Differentiation

James T. Morton, Jon Sanders, Robert A. Quinn, Daniel McDonald, Antonio Gonzalez, Yoshiki Vázquez-Baeza, Jose A. Navas-Molina, Se Jin Song, Jessica L. Metcalf, Embriette R. Hyde, Manuel Lladser, Pieter C. Dorrestein, Rob Knight

Presentation and slides by:
Yotam Nitzan
yotam.nitzan@gmail.com
Outline

• Motivation
• Definitions
• Method
 • Balances
 • Balance Trees
 • ILR
• Results
 • Case study 1
 • Case study 2
• Implementation
• Summary
Compositional data

Represented by relative abundance and carry no meaning for absolute abundance of specific feature.
The problem with compositional data

But what happened?
The problem with compositional data

All abundancies in a sample are dependent!

- It’s impossible to certainly know if a growth or decline of a specie actually occurred.

- Analyses that assumes independence of variables, as many statistical approaches do, are prone to misinterpretation.

- Problematic to detect differently abundant microbes across environments.
Definitions

- **Niche** - the match of a specie to specific environmental condition, such as habitat, resources, competitors and more.

- **Niche differentiation** - the process by which competing species use the environment differently in a way that helps them to coexist.

- **pH** – scale from 0 to 14, used to specify how acidic or basic a water-based solution is.
Balances

- Avoid attempts to infer absolute changes in abundance.

- Instead, infer change in balances of abundances between two particular subsets of the community.
Balance Trees

• Extend the concept of balances to multiple dimensions and taxa using a tree
Balance Trees

The tree could be built using any criterion, depending on the question in hand.

• A phylogenetic tree could be used to investigate evolutionary relationships.

• A hierarchal clustering of environmental variables could be used to explore environmental niches of microbes.

• You name it!
Balance function

- We’ll use isometric log ratio (ILR) as the balance function.

\[
b_i = \sqrt{\frac{|i_L||i_R|}{|i_L| + |i_R|}} \log \left(\frac{g(i_L)}{g(i_R)} \right)
\]

* Add pseudocount of 1 to all counts to mitigate the problem of zero-counts.
Balance function

• We’ll use isometric log ratio (ILR) as the balance function.

\[b_i = \sqrt{\frac{|i_L|i_R|}{|i_L| + |i_R|}} \log\left[\frac{g(i_L)}{g(i_R)} \right] \]

• Back to our 2D toy example:
ILR Example

\[b_i = \sqrt{\frac{|i_L||i_R|}{|i_L| + |i_R|} \log \left(\frac{g(i_L)}{g(i_R)} \right)} \]

Outline

- Motivation
- Definitions
- **Method**
 - Balances
 - Balance Trees
 - ILR
- Results
 - Case study 1
 - Case study 2
- Implementation
- Summary

<table>
<thead>
<tr>
<th>Proportions</th>
<th>4/11</th>
<th>1/11</th>
<th>2/11</th>
<th>3/11</th>
<th>1/11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentages</td>
<td>36%</td>
<td>9%</td>
<td>18%</td>
<td>27%</td>
<td>9%</td>
</tr>
<tr>
<td>Counts</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Outline

- Motivation
- Definitions
- **Method**
 - Balances
 - Balance Trees
 - **ILR**
- Results
 - Case study 1
 - Case study 2
- Implementation
- Summary

ILR Example

\[b_i = \sqrt{\frac{|i_L||i_R|}{|i_L| + |i_R|}} \log \left[\frac{g(i_L)}{g(i_R)} \right] \]

<table>
<thead>
<tr>
<th>Proportions</th>
<th>4/13</th>
<th>1/13</th>
<th>2/13</th>
<th>3/13</th>
<th>3/13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentages</td>
<td>30%</td>
<td>7%</td>
<td>14%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>Counts</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Some benefits to note

- Scale invariant.
- Subcompositionally coherent, which means that changes in nonoverlapping subcommunities do not impact each other.
- Permutation invariant.
The authors did not benchmark their method against other “compositional aware tools”.

As for results, the authors demonstrate novel insight realized using balance trees on two existing papers.
Introduction – Case study 1

• 88 soil samples collected along with many measurements.
• The study reported the existence or inexistence of a few bacterial phyla to pH levels.
 • Acidobacteria negatively correlated with pH
 • Actinobacteria, Bacteroidetes correlated with pH
 • Alpha-, Beta- and Gammaproteobacteria not correlated with pH
 • But, each phylum was correlated with pH independently. That’s the misinterpretation we feared.
Balance Tree to the rescue!

• Order OTUs by mean pH in samples.

• Construct a tree by hierarchical clustering.
The tree’s root balance

We observe a nice linear trend!
Abundance “heatmap”

OTUs are sorted by mean pH

Outline

• Motivation
• Definitions
• Method
 • Balances
 • Balance Trees
 • ILR
• Results
 • Case study 1
 • Case study 2
• Implementation
• Summary
Conclusions

• OTUs tend to be observed in very specific pH ranges.

• This ties to concept from niche theory: OTUs are suited to live in a specific environment, and when placed outside of it are outcompeted.

• These patterns are missed if looked only at phyla level. The phyla mentioned in the original paper were distributed all over the pH.
Conclusions

Outline

• Motivation
• Definitions
• Method
 • Balances
 • Balance Trees
 • ILR
• Results
 • Case study 1
 • Case study 2
• Implementation
• Summary

pH

Phyla

• p__Acidobacteria
 N= 55
• p__Actinobacteria
 N=11
• p__Bacteroidetes
 N=6
• p__Cyanobacteria
 N=1
• p__Firmicutes
 N=3
• p__Gemmatimonadetes
 N=2
• p__Nitrospirae
 N=1
• p__Proteobacteria
 N=37
Predictive model

- Next, we’ll build a predictive model that will predict a microbial community based on pH levels.

- Fit a quartic to each balance (node) with Least Squares.

- Map predicted balances back to proportions with inverse ILR

- The overall trend is predicted

- $R^2 = 0.35$
Lung sputum samples collected from 16 cystic fibrosis (CF) patients. Samples were placed into separate tubes and pH was adjusted from 5 to 8.5 at intervals of 0.5. It was observed that patients had different microbiomes. It was hypothesized that there were two subcommunities, one thrives at high pH and one at low pH.

Paper: A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation.
Introduction – Case study 2

• **But**, it could not be proven!

• Since patients had different OTUs, it was difficult to test the effect of pH on any OTU.
Balance Tree to the rescue!

- Construct a balance tree in the exact same manner.
Abundance heatmap

Remember the heatmap graph from previous case?

This time, no clear pattern!
The tree’s root balance

- We can still observe niche differentiation across pH gradient.

\[y_0^+ \rightarrow 7.6 < \text{mean pH} < 8.12, \]
\[y_0^- \rightarrow 5.4 < \text{mean pH} < 7.4, \]
Balance of subcommunity (depth=1)

• We can still observe niche differentiation across pH gradient.

\[y_1^+ \rightarrow 6.5 < \text{mean pH} < 7.4 \]
\[y_1^- \rightarrow 5.4 < \text{mean pH} < 6.4 \]
Conclusion

• We conclude that although CF patients had different lung sputum microbiome, they contain OTUs that behave the same with respect to pH.

• Grouping OTUs using a meaningful metric is beneficial.
Implementation

- Open Source, https://github.com/biocore/gneiss

- Implemented as Python package. Setup as easy as ‘pip install’.

- Awesome documentation and tutorials!
• Compositional data has its limitations.

• Balances are a robust concept to sidestep those limitations, and infer meaningful properties of subcommunities.

• Standard statistical techniques could be applied to balances.
Discussion

Discussion will be presented together with next lecture
Thanks !