
Regular Expressions
Pattern and Match objects

Genome 559: Introduction to Statistical and
Computational Genomics

Elhanan Borenstein

A quick review
 Strings: ‘abc’ vs. “abc” vs. ‘’’ abc’’’ vs. r’abc’

 String manipulation is doable but tedious

 Regular expressions (RE):
 A tiny language dedicated to string manipulation

 It’s all about finding a good match

 re.findall(<regexe>, <string>)

 RE Basics:
 letters and numbers match themselves

 Use predefined sets (e.g., \d, \W) or define youself ([a-c])

 ^ $ \b \B allows you to match string/word boundaries

 * + {n,m} allows you to define the number of repetitions

import sys

import re

file_name = sys.argv[1]

file = open(file_name,"r")

text = file.read()

addresses = re.findall(r'[a-zA-Z]\w*@\w+\.\w{3,3}', text)

print addresses

Finding email addresses

[‘jht@uw.edu’, ‘elbo@uw.edu’]

RE Quick Reference
MATCHING CHARACTER SETS
 Most letters and numbers match themselves
 [abc] means either ”a” , ”b” , or “c”
 [a-d] means ”a”, ”b”, ”c”, or ”d”
 [^a-d] means anything but a, b, c or d
 \d matches any decimal digit (equivalent to [0-9]).
 \D matches any non-digit character (equivalent to [^0-9]).
 \s matches any whitespace character (equivalent to [\t\n\r\f\v]).
 \S matches any non-whitespace character (equivalent to [^ \t\n\r\f\v]).
 \w matches any alphanumeric character (equivalent to [a-zA-Z0-9_]).
 \W matches any non-alphanumeric character (equivalent to the class

[^a-zA-Z0-9_].
 . matches any character (except newline)

MATCHING BOUNDARIES
 ^ matches the beginning of the string
 $ matches the end of the string
 \b matches a word boundary
 \B matches position that is not a word boundary

REPETITION
 * : The previous character can repeat 0 or more times
 + : The previous character can repeat 1 or more times
 A{1,3} means at least one and no more than three A’s

SEMANTICS
 RS matches the concatenation of strings matched by R, S individually
 R|S matches the union (either R or S)

RE FUNCTIONS/PATTERN OBJECT METHODS
 re.findall(pat,str)

Finds all (non-overlapping) matches
 re.match(pat,str)

Matches only at the beginning of str
 re.search(pat,str)

Matches anywhere in str
 re.split(pat,str)

Splits str anywhere matches are found
 re.sub(pat,new_str,str)

Substitutes matched patterns in str with
new_str

 re.compile(pat)

Compile a Pattern object

MATCH OBJECT METHODS
 group():

Returns the string that was matched
 group(i):

Returns the i sub-pattern that was
matched

 groups():
Returns all sub-patterns that were
matched as a list

 start():
Returns starting position of the match

 end() :
Returns ending position of the match

 span() :
Returns (start,end) as a tuple

What (else) can we do with RE
 re.findall(pat,str)

 finds all (nonoverlapping) matches

 re.match(pat, str)

 matches only at the beginning of the string

 re.search(pat,str)

 matches anywhere in the string

 More soon to come (split, substitute,...)

What do these functions return
 re.findall(pat,str)

 finds all (nonoverlapping) matches

 re.match(pat, str)

 matches only at the beginning of the string

 re.search(pat,str)

 matches anywhere in the string

 More soon to come (split, substitute,...)

If nothing was found:
returns None

Otherwise:
returns a

“match” object

If nothing was found:
returns an empty list

Otherwise:
returns a list of

strings

“Match” objects
 Objects designed specifically for the re module

 Retain information about exactly where the pattern
matched, and how.

 Methods offered by a Match object:
 group(): returns the string that matched

 start(): returns the starting position of the match

 end() : returns the ending position of the match

 span() : returns (start,end) as a tuple

“Match” objects
>>> import re

>>> pat = r'\w+@\w+\.(com|org|net|edu)'

>>>

>>> my_match = re.search(pat, “this is not an email")

>>> print my_match

None

>>>

>>> my_match = re.search(pat, "my email is elbo@uw.edu")

>>> print my_match

<_sre.SRE_Match object at 0x895a0>

>>>

>>> my_match.group()

elbo@uw.edu

>>> my_match.start()

12

>>> my_match.end()

23

>>> my_match.span()

(12,23)

What got matched?
 We might want to extract information about what

matched specific parts in the pattern (e.g., email
name and domain)

 Extremely useful for extracting data fields from
a formatted file !!

 We can parenthesize parts of the pattern and get
information about what substring matched this part
within the context of the overall match.

>>> pat = r‘(\w+)@(\w+)\.+(com|org|net|edu)'

part 1 part 2 part 3

What got matched? Examples
>>> import re

>>> pat = r‘(\w+)@(\w+)\.(com|org|net|edu)'

>>> my_match = re.search(pat, "my email is elbo@uw.edu")

>>>

>>> my_match.group()

elbo@uw.edu

>>> my_match.group(1)

elbo

>>> my_match.group(2)

uw

>>> my_match.group(3)

edu

>>> my_match.groups()

(‘elbo’,’uw’,’edu’)

>>> import re

>>> str = 'My birthday is 9/12/1988'

>>> pat = r'[bB]irth.* (\d{1,2})/(\d{1,2})/(\d{2,4})'

>>> match = re.search(pat,str)

>>> print match.groups()

(‘9’,’12’,’1988’)

Think how annoying
and cumbersome it
would be to code

these yourself

More re functions
 re.split(pat,str)

 Similar to the simple string split method, but can use
patterns rather than single characters

 re.sub(pat,new_str,str)

 Substitutes the matches pattern with a string

>>> import re

>>> re.split(r’chapter \d ‘, “chapter 1 This is … chapter 2 It was …”)

['This is …', ‘It was …‘]

>>> import re

>>> pat_clr = r’(blue|white|red)’

>>> re.sub(pat_clr, 'black', ‘wear blue suit and a red tie')

‘wear black suit and a black tie’

>>> pat2 = r’(TAG|TAA|TGA)’

>>> re.split(pat2, my_DNA)

???

Cool substitution feature
 A very handy RE feature is the ability to use the sub-

patterns you found as substitution strings.

>>> import re

>>> str = 'My birthday is 9/12/1988'

>>> pat = r'(\d{1,2})/(\d{1,2})/(\d{2,4})'

>>> match = re.search(pat,str)

>>> print match.groups()

(‘9’,’12’,’1988’)

>>>

>>> rev_str = re.sub(pat,r’\2-\1-\3’,str)

>>> print rev_str

‘My birthday is 12-9-1988’

References to
the sub-patterns

found

Sample problem #1
 Parse an enzymatic database file.

 Download enzyme.txt from the course website.

 In this file, some lines have the following format:
Entry_code<some spaces>EC_number<some spaces>Category

 Entry_code is always the string “ENTRY”

 EC_number is a label that starts with “EC”, followed by a single
space, followed by four 1-3 digit numbers separated by dots.

 Category is a text descriptor (assume it can include several words).

For example:
ENTRY EC 2.4.1.130 Enzyme

ENTRY EC 1.14.21.2 Obselete Enzyme

 Read each line in the file and check whether it has this
format. If so print it.

import re

import sys

file_name = sys.argv[1]

file = open(file_name,'r')

pat = r'ENTRY +EC \d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3} +\b.*'

for line in file:

 line = line.strip()

 match_obj = re.match(pat,line)

 if match_obj != None:

 print line

Solution #1

ENTRY EC 1.1.1.1 Enzyme

ENTRY EC 1.1.1.2 Enzyme

ENTRY EC 1.1.1.3 Enzyme

ENTRY EC 1.1.1.4 Enzyme

ENTRY EC 1.1.1.5 Obsolete Enzyme

ENTRY EC 1.1.1.6 Enzyme

ENTRY EC 1.1.1.7 Enzyme

ENTRY EC 1.1.1.8 Enzyme

ENTRY EC 1.1.1.9 Enzyme

…

Sample problem #2
1. Using the same parsing process as in problem #1,

now print only the EC_numbers you found.

 Note: Print only EC_numbers that are part of lines that have
the format described in problem #1. EC numbers appear in
many other lines as well but those instances should not be
printed.

 Try using a single RE pattern

2. Now, print these EC numbers but include only the 1st
and the 4th number elements
(i.e., instead of EC 2.34.21.132, print EC 2.132)

import re

import sys

file_name = sys.argv[1]

file = open(file_name,'r')

pat = r'ENTRY +(EC \d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) +\b.*'

for line in file:

 line = line.strip()

 match_obj = re.match(pat,line)

 if match_obj != None:

 print match_obj.group(1)

Solution #2.1

EC 1.1.1.1

EC 1.1.1.2

EC 1.1.1.3

EC 1.1.1.4

EC 1.1.1.5

EC 1.1.1.6

EC 1.1.1.7

EC 1.1.1.8

EC 1.1.1.9

…

import re

import sys

file_name = sys.argv[1]

file = open(file_name,'r')

pat = r'ENTRY +EC (\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3}) +\b.*'

for line in file:

 line = line.strip()

 match_obj = re.match(pat,line)

 if match_obj != None:

 print "EC “ + match_obj.group(1) + ".“ + match_obj.group(4)

Solution #2.2

EC 1.1

EC 1.2

EC 1.3

EC 1.4

EC 1.5

EC 1.6

…

Sample problem #3
1. Download and save warandpeace.txt. Write a program

to read it line-by-line. Use re.findall to check whether
the current line contains one or more “proper” names
ending in “...ski”. If so, print these names:

2. Now, instead of printing these names for each line,
insert them into a dictionary and just print all the
“…ski” names that appear in the text at the end of your
program (preferably sorted):

['Bolkonski']

['Bolkonski']

['Bolkonski']

['Bolkonski']

['Volkonski']

['Volkonski']

['Volkonski']

Aski

Bitski

Bolkonski

Borovitski

Bronnitski

Czartoryski

Golukhovski

Gruzinski

Solution #3.1
import sys

import re

file_name = sys.argv[1]

file = open(file_name,"r")

names_dict = {} # A dictionary for storing all names

for line in file:

 names = re.findall(r'\w+ski', line)

 if len(names) > 0:

 print names

file.close()

Solution #3.2
import sys

import re

file_name = sys.argv[1]

file = open(file_name,"r")

names_dict = {} # A dictionary for storing all names

for line in file:

 names = re.findall(r'\w+ski', line)

 for name in names:

 names_dict[name] = 1

file.close()

name_list = names_dict.keys()

name_list.sort()

for name in name_list:

 print name

Problem #4
 “Translate” the first 100 lines of War and Peace to Pig

Latin.

 The rules of translations are as follows:

 If a word starts with a consonant: move it to the end and
append “ay”

 Else, for words that starts with a vowel, keep as is, but add
“zay” at the end

 Examples: beast → eastbay; dough → oughday;
another→ anotherzay; if→ ifzay

 Hint: Remember the cool substitution trick we
learned.

What got matched? Labels
 You can even label the groups for convenience

>>> import re

>>> pat=r‘(?P<name>\w+)@(?P<host>\w+)\.(?P<ext>com|org|net|edu)'

>>> my_match = re.search(pat, "my email is elbo@uw.edu")

>>>

>>> my_match.group(‘name’)

elbo

>>> my_match.group(‘host’)

uw

>>> my_match.group(‘ext’)

edu

Pattern objects and “compile”
 If you plan to use a pattern repeatedly, compile it to a

“Pattern” object

 Working with a compiled Pattern object will speed up
matching

 All the re functions will now work as methods.

 Optional flags can further modify defaults, e.g., case-sensitive
matching etc.

>>> import re

>>> pat = r‘\w+@\w+\.edu‘

>>> pat_obj = re.compile(pat)

>>> pat_obj.findall(“elbo@uw.edu and jht@uw.edu”)

[‘elbo@uw.edu’,’jht@uw.edu’]

>>>

>>> match_obj = pat_obj.search("my email is elbo@uw.edu")

Note: no need
for a pattern as

an argument

