
Functions

Genome 559: Introduction to Statistical and
Computational Genomics

Elhanan Borenstein

A quick review

 Dictionaries:
 key:value pairs

 a.k.a. hash tables, lookup tables

 Examples:
 Word and definition

 Name and phone number

 Gene name and score

 Username and password

 Dictionaries are useful when you want to look up some
data (value) based on a key

 Each key can appear only once

0 val1
1 val2
2 val3
3 val4
4 val5
 …
max last_val

by value:

is myVal == val1 ?

is myVal == val2 ?

is myVal == val3 ?

is myVal == val4 ?

is myVal == val5 ?

is myVal == last_val ?

0 val1
1 val2
2 val3
3 val4
4 val5
 …
max last_val

by index:

4

(index points directly to position
in memory)

Note: dictionary and list access times

 Accessing a list by index is very fast!

 Accessing a dictionary by key is very fast!

 Accessing a list by value (e.g. list.index(myVal)
or list.count(myVal)) can be SLOW.

import sys

matrixFile = open(sys.argv[1], "r")

matrix = [] # initialize empty matrix

line = matrixFile.readline().strip() # read first line stripped

while len(line) > 0: # until end of file

 fields = line.split("\t") # split line on tabs, giving a list of strings

 intList = [] # create an int list to fill

 for field in fields: # for each field in current line

 intList.append(int(field)) # append the int value of field to intList

 matrix.append(intList) # after intList is filled, append it to matrix

 line = matrixFile.readline().strip() # read next line and repeat loop

matrixFile.close()

for row in matrix: # go through the matrix row by row

 for val in row: # go through each value in the row

 print val, # print each value without line break

 print "" # add a line break after each row

… and think how much you've learned!
4 weeks ago, this would have been gibberish:

Take a deep breath …

In theory,
what you know so far allows you
to solve any computational task

(“universality”)

So … why don’t we stop here?

most real-life tasks
will be (very) painful to solve

using only what you know so far ...

What are we missing?

 A way to generalized procedures …

 A way to store and handle complex data …

 A way to organize our code …

 Better design and coding practices …

Functions

Why functions?

 Reusable piece of code

 write once, use many times

 Within your code; across several codes

 Helps simplify and organize your program

 Helps avoid duplication of code

What a function does?

 Takes defined inputs (arguments) and may
produce a defined output (return)

things happen

stuff goes in (arguments)

other stuff comes out (return)

 Other than the arguments and the return, everything else inside the function is
invisible outside the function (variables assigned, etc.). Black box!

 The function doesn't need to have a return.

 Spoiler: The arguments can be changed and changes are visible outside the function

import math

def jc_dist(rawdist):

 if rawdist < 0.75 and rawdist > 0.0:

 newdist = (-3.0/4.0) * math.log(1.0 - (4.0/3.0)* rawdist)

 return newdist

 elif rawdist >= 0.75:

 return 1000.0

 else:

 return 0.0

def <function_name>(<arguments>):

 <function code block>

 <usually return something>

Defining a function

define the function and
argument(s) names

Do something

return a computed
value

<function defined here>

import sys

dist = sys.argv[1]

correctedDist = jc_dist(dist)

Using (calling) a function

Once you've written the function,
you can forget about it and just use it!

<function defined here>

import sys

dist = sys.argv[1]

correctedDist = jc_dist(dist)

AnotherDist = 0.354

AnotherCorrectedDist = jc_dist(AnotherDist)

OneMoreCorrectedDist = jc_dist(0.63)

Using (calling) a function

import sys

import math

rawdist = float(sys.argv[1])

if rawdist < 0.75 and rawdist > 0.0:

 newdist = (-3.0/4.0) * math.log(1.0 - (4.0/3.0)* rawdist)

 print newdist

elif rawdist >= 0.75:

 print 1000.0

else:

 print 0.0

From “In-code” to Function

import sys

import math

def jc_dist(rawdist):

 rawdist = float(sys.argv[1])

 if rawdist < 0.75 and rawdist > 0.0:

 newdist = (-3.0/4.0) * math.log(1.0 - (4.0/3.0)* rawdist)

 return newdist

 elif rawdist >= 0.75:

 return 1000.0

 else:

 return 0.0

Add a function
definition

delete - use function
argument instead of argv

return value rather
than printing it

Jukes-Cantor distance correction written directly in program:

Jukes-Cantor distance correction written as a function:

 math.log(value)

 readline(), readlines(), read()

 sort()

 split(), replace(), lower()

We've used lots of functions before!

 These functions are part of the Python programming
environment (in other words they are already written
for you).

 Note - some of these are functions attached to
objects (and called object "methods") rather than
stand-alone functions. We'll cover this later.

Function names, access, and usage
 Giving a function an informative name is very important!

Long names are fine if needed:
def makeDictFromTwoLists(keyList, valueList):

def translateDNA(dna_seq):

def getFastaSequences(fileName):

 For now, your function will have to be defined within your
program and before you use it. Later you'll learn how to save a
function in a module so that you can load your module and
use the function just the way we do for Python modules.

 Usually, potentially reusable parts of your code should be
written as functions.

 Your program (outside of functions) will often be very short -
largely reading arguments and making output.

TIP
OF THE

DAY

Code like a pro …
How to approach a
computational task:

Pseudo-code

Debug prints

Design
principles

Variable
Naming

Assessing
efficiency

Readability

Commenting

Code recycling

“Dry runs”

Modules

Hungarian
notation

Incremental
coding

TIP
OF THE

DAY

Code like a pro …

Think

Design

Improve

Debug

Code

Have a
beer

How to approach a
computational task:

import sys

myFile = open(sys.argv[1], "r")

make an empty dictionary

scoreDict = {}

for line in myFile:

 fields = line.strip().split("\t")

 # record each value with name as key

 scoreDict[fields[0]] = float(fields[1])

myFile.close()

Below is part of the program from a sample problem last class. It reads key - value
pairs from a tab-delimited file and makes them into a dictionary. Rewrite it so that
there is a function called makeDict that takes a file name as an argument and
returns the dictionary.

Use:
scoreDict = makeDict(myFileName)

seq00036<tab>784

seq57157<tab>523

seq58039<tab>517

seq67160<tab>641

seq76732<tab>44

seq83199<tab>440

seq92309<tab>446

etc.

Here's what the file
contents look like:

Sample problem #1

import sys

def makeDict(fileName):

 myFile = open(fileName, "r")

 myDict = {}

 for line in myFile:

 fields = line.strip().split("\t")

 myDict[fields[0]] = float(fields[1])

 myFile.close()

 return myDict

myFileName = sys.argv[1]

scoreDict = makeDict(myFileName)

Solution #1

import sys

def makeDict(fileName):

 myFile = open(fileName, "r")

 myDict = {}

 for line in myFile:

 fields = line.strip().split("\t")

 myDict[fields[0]] = float(fields[1])

 myFile.close()

 return myDict

myFileName = sys.argv[1]

scoreDict = makeDict(myFileName)

Two things to notice here:
 - you can use any file name (string) when you call the function
 - you can assign any name to the function return

(in programming jargon, the function lives in its own namespace)

Solution #1
name used

inside function

name used to
call function

name used
inside function

Assign the
return
value

Write a function that mimics the <file>.readlines() method. Your function will have
a file object as the argument and will return a list of strings (in exactly the format of
readlines()). Use your new function in a program that reads the contents of a file
and prints it to the screen.

You can use other file methods within your function, and specifically, the
method read() - just don't use the <file>.readlines() method directly.

Note: This isn't a useful function, since Python developers already did it for
you, but the point is that the functions you write are just like the ones we've
already been using. BTW you will learn how to attach functions to objects a bit
later (things like the split function of strings, as in myString.split()).

Sample problem #2

import sys

def readlines(file):

 text = file.read()

 tempLines = text.split("\n")

 lines = []

 for tempLine in tempLines:

 lines.append(tempLine + "\n")

 return lines

myFile = open(sys.argv[1], "r")

lines = readlines(myFile)

for line in lines:

 print line.strip()

Solution #2

Write a program that reads a file containing a tab-delimited matrix of pairwise
distances and puts them into a 2-dimensional list of distances (floats). Have the
program accept two additional arguments, which are the names of 2 sequences
from the matrix, and print their distance.

Here's what the file contents look like:

names<tab>seq1<tab>seq2<tab>seq3
seq1<tab>0<tab>0.1<tab>0.2
seq2<tab>0.1<tab>0<tab>0.3
seq3<tab>0.2<tab>0.3<tab>0
Etc.
…

Be sure it works with ANY matrix file with
this format! The file will always be a
square matrix of size (N+1) x (N+1). N for
each distance and 1 row and column for
names.

>python dist.py matrixFile seq2 seq3
0.3

Make the matrix reading a function.

Hints: use the first line to make a dictionary of names to list indices;
your function should return a 2-dimensional list of floats.

Challenge problem

import sys

def makeMatrix(fileName):

 myFile = open(fileName, "r")

 myMatrix = []

 lines = myFile.readlines()

 for rowIndex in range(1,len(lines)):

 fields = lines[rowIndex].strip().split("\t")

 matRow = []

 for colIndex in range(1,len(fields)):

 matRow.append(float(fields[colIndex]))

 myMatrix.append(matRow)

 myFile.close()

 return myMatrix

def makeNameMap(fileName):

 myFile = open(fileName, "r")

 line = myFile.readline();

 myFile.close()

 nameMap = {}

 fields = line.strip().split("\t")

 for index in range(1,len(fields)):

 nameMap[fields[index]] = index - 1

 return nameMap

distMatrix = makeMatrix(sys.argv[1])

nameMap = makeNameMap(sys.argv[1])

print distMatrix[nameMap[sys.argv[2]]][nameMap[sys.argv[3]]]

I wrote both complex parts as
functions; this makes the point
that once these are written and
debugged, the program is simple
and easy to read (the last three
lines).

Challenge solution

looks up the argument string as
the key in nameMap, which

returns the index of the name in
the 2-dimensional list of distance

values

(this could be done more
efficiently - this way you

open the file twice)

