
Recursion

Genome 559: Introduction to Statistical and
Computational Genomics

Elhanan Borenstein

So … what is a recursion and
what is it good for?

Sorting algorithm
 A sorting algorithm takes a list of elements in an

arbitrary order, and sort these elements in an
ascending order.

 Commonly used algorithms:

 Naïve sorting (a.k.a. selection sort)
Find the smallest element and move it to the
beginning of the list

 Bubble sort
Swap two adjacent elements whenever they are not in
the right order

 Merge sort
???

The merge sort algorithm

1. Split your list into two halves

2. Sort the first half

3. Sort the second half

4. Merge the two sorted halves, maintaining a
sorted order

Divide-and-conquer
 The basic idea behind the merge sort algorithm is to

divide the original problem into two halves, each
being a smaller version of the original problem.

 This approach is known as divide and conquer

 Top-down technique

 Divide the problem into independent smaller problems

 Solve smaller problems

 Combine smaller results into a larger result thereby
“conquering” the original problem.

Merge sort – the nitty gritty
The merge sort algorithm

1. Split your list into two halves

2. Sort the first half

3. Sort the second half

4. Merge the two sorted halves,
maintaining a sorted order

That’s
simple

Careful bookkeeping,
but still simple

???

If I knew how to sort, I wouldn’t be here in the
first place?!?

1

2

5

8

12

21

3

6

10

20

28

31

1

2

3

5

6

8

10

12

20

21

28

31

Merge sort – the nitty gritty
The merge sort algorithm

1. Split your list into two halves

2. Sort the first half

3. Sort the second half

4. Merge the two sorted halves,
maintaining a sorted order

That’s
simple

???

Here’s a crazy idea:
let’s use merge sort
to do this

def mergeSort(list):

 half1 first half of list

 half2 second half of list

 half1_sorted = mergeSort(half1)

 half2_sorted = mergeSort(half2)

 list_sorted = merge(half1_sorted,half2_sorted)

 return list_sorted

Careful bookkeeping,
but still simple

1

2

5

8

12

21

3

6

10

20

28

31

1

2

3

5

6

8

10

12

20

21

28

31

You must be kidding, right?

this is making me dizzy!

 WHAT?

 This function has no loop?

 It seems to refer to itself!

 Where is the actual sort?

 What’s going on???

def mergeSort(list):

 half1 first half of list

 half2 second half of list

 half1_sorted = mergeSort(half1)

 half2_sorted = mergeSort(half2)

 list_sorted = merge(half1_sorted,half2_sorted)

 return list_sorted

Let’s take a step back …

Factorial

This function calculated n!

def factorial(n):

 f = 1

 for i in range(1,n+1):

 f *= i

 return f

>>> print factorial(5)

120

>>> print factorial(12)

479001600

 A simple function that calculates n!

 This code is based on the standard definition of
factorial: 𝑛! = 𝑘𝑛

𝑘=1

Factorial
 But … there is an alternative recursive definition:

 So … can we write a function that calculates n! using
this approach?

 Well …
We can! It works! And it is called a recursive function!

0)!1(

01
!

nifnn

nif
n

This function calculated n!

def factorial(n):

 if n==0:

 return 1

 else:

 return n * factorial(n-1)

Why is it working?
This function calculated n!

def factorial(n):

 if n==0:

 return 1

 else:

 return n * factorial(n-1)

factorial(5)

5 * factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1 * factorial(0)

2

6

24

120

1

1
1

Recursion and recursive functions
 A function that calls itself, is said to be a recursive

function (and more generally, an algorithm that is defined in
terms of itself is said to use recursion or be recursive)

(A call to the function “recurs” within the function; hence the
term “recursion”)

 In may real-life problems, recursion provides an
intuitive and natural way of thinking about a solution
and can often lead to very elegant algorithms.

mmm…
 If a recursive function calls itself in order to solve the

problem, isn’t it circular?
(in other words, why doesn’t this result in an infinite loop?)

 Factorial, for example, is not circular because we
eventually get to 0!, whose definition does not rely on
the definition of another factorial and is simply 1.

 This is called a base case for the recursion.

 When the base case is encountered, we get a closed
expression that can be directly computed.

Defining a recursion
 Every recursive algorithm must have two key features:

1. There are one or more base cases for which no recursion
is applied.

2. All recursion chains eventually end up at one of the base
cases.

The simplest way for these two conditions
to occur is for each recursion to act on a
smaller version of the original problem.
A very small version of the original problem
that can be solved without recursion then
becomes the base case.

This is fun!
Let’s try to solve (or at least think of)

other problems using recursion

String reversal

h e l l o w o r l d

String reversal

This function reverses a string

def reverse(s):

 return reverse(s[1:]) + s[0]

 Divide the string into first character and all the rest

 Reverse the “rest” and append the first character to
the end of it

h e l l o w o r l d

h d l r o w o l l e +

reverse

s[1:] returns all but the first character of the string. We reverse this
part (s[1:]) and then concatenate the first character (s[0]) to the end.

See how simple and
elegant it is! No loops!

String reversal - D’oh!
This function reverses a string

def reverse(s):

 return reverse(s[1:]) + s[0]

>>> print reverse(“hello world”)

What just happened? There are 1000 lines of errors!

>>> print reverse(“hello world”)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 2, in reverse

 File "<stdin>", line 2, in reverse

 File "<stdin>", line 2, in reverse

 File "<stdin>", line 2, in reverse

 File "<stdin>", line 2, in reverse

 File "<stdin>", line 2, in reverse

 .

 .

 .

 File "<stdin>", line 2, in reverse

 File "<stdin>", line 2, in reverse

 File "<stdin>", line 2, in reverse

 File "<stdin>", line 2, in reverse

 File "<stdin>", line 2, in reverse

RuntimeError: maximum recursion depth exceeded

String reversal – Duh!
 Remember: To build a correct recursive function, we

need a base case that doesn’t use recursion!

We forgot to include a base case, so our program is an infinite
recursion. Each call to “reverse” contains another call to
reverse, so none of them return.

Each time a function is called it takes some memory. Python
stops it at 1000 calls, the default “maximum recursion depth.”

 What should we use for our base case?

String reversal - Yeah
 Since our algorithm is creating shorter and shorter

strings, it will eventually reach a stage when S is of
length 1 (one character).

 Since a string of length 1 is its own reverse, we can
use it as the base case.

This function reverses a string

def reverse(s):

 if len(s) == 1:

 return s

 else:

 return reverse(s[1:])+s[0]

>>> print reverse(“hello world”)

“dlrow olleh”

Search a sorted list
(think phonebook)

 How would you search a sorted list to check whether
a certain item appears in the list and where?

 Random search (yep, I know, this is a stupid algorithm)

 Serial search – O(n)

 Binary search

hunting a lion in the desert

Binary search

The binary-search algorithm

1. If your list is of size 0, return “not-found”.

2. Check the item located in the middle of your list.

3. If this item is equal to the item you are looking for:
 you’re done! Return “found”.

4. If this item is bigger than the item you are looking for:
 do a binary-search on the first half of the list.

5. If this item is smaller than the item you are looking for:
 do a binary-search on the second half of the list.

 How long does it take for this algorithm to find the query
item (or to determine it is not in the list)?

Towers of Hanoi
 There are three posts and 64 concentric disks shaped

like a pyramid.

 The goal is to move the disks from post A to post B,
following these three rules:

1. You can move only one disk at a time.

2. A disk may not be “set aside”. It may only be stacked on
one of the three posts.

3. A larger disk may never be placed on top of a smaller one.
A B C

Towers of Hanoi

Towers-of-Hanoi algorithm (for an “n disk tower”)

1. Move an “n-1 disk tower” from source-post to resting-post
(use the tower-of-hanoi algorithm)

2. Move 1 disk from source-post to destination-post

3. Move an “n-1 disk tower” from resting-post to destination-
post (use the tower-of-hanoi algorithm)

A B C

 What should the base case be?

 Assuming you have 64 disks
and each disk move takes 1
second, when will the
world end?

Phylogenetic Analysis with Recursion

Traversing a phylogenetic tree
 Recursion is extremely useful when processing a data

structure that is recursive by nature.

10

12 3

1 15 7

9 6

def preorder(node):

 if node == None:

 return

 print node.value,

 preorder(node.left)

 preorder(node.right)

preorder(root)

10 3 1 7 6 9 12 15

Traversing a phylogenetic tree

10

12 3

1 15 7

9 6

def postorder(node):

 if node == None:

 return

 postorder(node.left)

 postorder(node.right)

 print node.value,

postorder(root)

1 6 9 7 3 15 12 10

 Recursion is extremely useful when processing a data
structure that is recursive by nature.
def preorder(node):

 if node == None:

 return

 print node.value,

 preorder(node.left)

 preorder(node.right)

preorder(root)

10 3 1 7 6 9 12 15

Finally,
let’s get back to our merge sort

The merge sort algorithm

1. Split your list into two halves

2. Sort the first half (using
merge sort)

3. Sort the second half (using
merge sort)

4. Merge the two sorted halves,
maintaining a sorted order

4
3
2

1

4
 h

e
lp

e
r

fu
n

ct
io

n

Merge two sorted lists

def merge(list1, list2):

 merged_list = []

 i1 = 0

 i2 = 0

 # Merge

 while i1 < len(list1) and i2 < len(list2):

 if list1[i1] <= list2[i2]:

 merged_list.append(list1[ii])

 i1 += 1

 else:

 merged_list.append(list2[i2])

 i2 += 1

 # One list is done, move what's left

 while i1 < len(list1):

 merged_list.append(list1[i1])

 i1 += 1

 while i2 < len(list2):

 merged_list.append(list2[i2])

 i2 += 1

 return merged_list

merge sort recursive

def sort_r(list):

 if len(list) > 1: # Still need to sort

 half_point = len(list)/2

 first_half = list[:half_point]

 second_half = list[half_point:]

 first_half_sorted = sort_r(first_half)

 second_half_sorted = sort_r(second_half)

 sorted_list = merge \

 (first_half_sorted, second_half_sorted)

 return sorted_list

 else:

 return list

The merge sort algorithm

1. Split your list into two halves

2. Sort the first half (using
merge sort)

3. Sort the second half (using
merge sort)

4. Merge the two sorted halves,
maintaining a sorted order

List of size 1.
Base case

Recursion vs. Iteration
 There are usually similarities between an iterative

solutions (e.g., looping) and a recursive solution.

 In fact, anything that can be done with a loop can be done
with a simple recursive function!

 In many cases, a recursive solution can be easily converted
into an iterative solution using a loop (but not always).

 Recursion can be very costly!

 Calling a function entails overhead

 Overhead can be high when function calls are numerous
(stack overflow)

Recursion - the take home message
 Recursion is a great tool to have in your problem-

solving toolbox.

 In many cases, recursion provides a natural and
elegant solution to complex problems.

 If the recursive version and the loop version are
similar, prefer the loop version to avoid overhead.

 Yet, even in these cases, recursion offers a creative
way to think about how a problem could be solved.

Sample problem #1
 Write a function that calculates the sum of the

elements in a list using a recursion

Hint: your code should not include ANY for-loop or
while-loop!

 Put your function in a module, import it into another
code file and use it to sum the elements of some list.

def sum_recursive(a_list):

 if len(a_list) == 1:

 return a_list[0]

 else:

 return a_list[0] + sum_recursive(a_list[1:])

Solution #1

utils.py

my_list = [1, 3, 5, 7, 9, 11]

from utils import sum_recursive

print sum_recursive(my_list)

my_prog.py

Sample problem #2
 Write a recursive function that determines whether a

string is a palindrome. Again, make sure your code
does not include any loops.

A palindrome is a word or a sequence that can be read the
same way in either direction.

For example:

 “detartrated”

 “olson in oslo”

 “step on no pets”

Solution #2

def is_palindrome(word):

 l = len(word)

 if l <= 1:

 return True

 else:

 return word[0] == word[l-1] and is_palindrome(word[1:l-1])

>>>is_palindrome("step on no pets")

True

>>>is_palindrome("step on no dogs")

False

>>>is_palindrome("12345678987654321")

True

>>>is_palindrome("1234")

False

Challenge problems
1. Write a recursive function that prime factorize s an

integer number.
(The prime factors of an integer are the prime numbers that divide the
integer exactly, without leaving a remainder).
Your function should print the list of prime factors:

Note: you can use a for loop to find a divisor of a number but the
factorization process itself should be recursive!

2. Improve your function so that it “returns” a list
containing the prime factors. Use pass-by-reference
to return the list.

3. Can you do it without using ANY loops whatsoever?

>>> prime_factorize(5624)

2 2 2 19 37

>>> prime_factorize(277147332)

2 2 3 3 3 3 3 7 7 11 23 23

import math

def prime_factorize(number):

 # find the first divisor

 divisor = number

 for i in range(2,int(math.sqrt(number))+1):

 if number % i == 0:

 divisor = i

 break

 print divisor,

 if divisor == number: # number is prime. nothing more to do

 return

 else: # We found another divisor, continue

 prime_factorize(number/divisor)

prime_factorize(277147332)

Challenge solution 1

import math

def prime_factorize(number, factors=[]):

 # find the first divisor

 divisor = number

 for i in range(2,int(math.sqrt(number))+1):

 if number % i == 0:

 divisor = i

 break

 factors.append(divisor)

 if divisor == number: # number is prime. nothing more to do

 return

 else: # We found another divisor, continue

 prime_factorize(number/divisor, factors)

factors = []

prime_factorize(277147332,factors)

print factors

Challenge solution 2

