Biological Networks Analysis Degree Distribution and Network Motifs

Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein

A quick review

- Ab initio gene prediction
- Parameters:
 - Splice donor sequence model
 - Splice acceptor sequence model
 - Intron and exon length distribution
 - Open reading frame
 - More ...
- Markov chain
 - States
 - Transition probabilities
- Hidden Markov Model (HMM)

A quick review

Networks:

- Networks vs. graphs
- A collection of nodes and links
- Directed/undirected; weighted/non-weighted, ...
- Networks as models vs. networks as tools
- Many types of biological networks
- The shortest path problem
- Dijkstra's algorithm
 - 1. Initialize: Assign a distance value, D, to each node. Set D=0 for *start* node and to infinity for all others.
 - For each unvisited neighbor of the current node: Calculate tentative distance, D^t, through current node and if D^t < D: D ← D^t. Mark node as visited.
 - **3.** Continue with the unvisited node with the smallest distance

Comparing networks

- We want to find a way to "compare" networks.
 - "Similar" (not identical) topology
 - Common" design principles

- We seek measures of network topology that are:
 - Simple
 - Capture global organization
 - Potentially "important"

(equivalent to, for example, GC content for genomes)

Summary

Node degree / rank

Degree = Number of neighbors

- Node degree in PPI networks correlates with:
 - Gene essentiality
 - Conservation rate
 - Likelihood to cause human disease

brief communications

Lethality and centrality in protein networks

The most highly connected proteins in the cell are the most important for its survival.

Degree distribution

 P(k): probability that a node has a degree of exactly k

10

100 1,000

Common distributions:

The power-law distribution

Power-law distribution has a "heavy" tail!

- Characterized by a small number of highly connected nodes, known as hubs
- A.k.a. "scale-free" network

Hubs are crucial:

 Affect error and attack tolerance of complex networks (Albert et al. Nature, 2000)

The Internet

- Nodes 150,000 routers
- Edges physical links
- P(k) ~ k^{-2.3}

Movie actor collaboration network

- **Nodes** 212,250 actors
- Edges co-appearance in a movie
- P(k) ~ k^{-2.3}

Barabasi and Albert, Science, 1999

Protein protein interaction networks

- Nodes Proteins
- Edges Interactions (yeast)
- P(k) ~ k^{-2.5}

Yook et al, Proteomics, 2004

Metabolic networks

- Nodes Metabolites
- Edges Reactions
- P(k) ~ k^{-2.2±2}

Metabolic networks across all kingdoms of life are scale-free

Jeong et al., Nature, 2000

Why do so many real-life networks exhibit a power-law degree distribution?

- Is it "selected for"?
- Is it expected by change?
- Does it have anything to do with the way networks evolve?
- Does it have functional implications?

Network motifs

- Going beyond degree distribution ...
- Generalization of sequence motifs
- Basic building blocks
- Evolutionary design principles?

What are network motifs?

 Recurring patterns of interaction (*sub-graphs*) that are significantly overrepresented (w.r.t. a background model)

Finding motifs in the network

- 1a. Scan all n-node sub-graphs in the *real* network
- **1b.** Record number of appearances of each sub-graph (*consider isomorphic architectures*)
- 2. Generate a large set of random networks
- 3a. Scan for all n-node sub-graphs in random networks
- 3b. Record number of appearances of each sub-graph
- 4. Compare each sub-graph's data and identify motifs

Finding motifs in the network

Network randomization

- How should the set of random networks be generated?
- Do we really want "completely random" networks?
- What constitutes a good null model?

Network randomization

- How should the set of random networks be generated?
- Do we really want "completely random" networks?
- What constitutes a good null model?

Preserve in- and out-degree

Generation of randomized networks

Start with the real network and repeatedly swap randomly chosen pairs of connections
(X1→Y1, X2→Y2 is replaced by X1→Y2, X2→Y1)

(Switching is prohibited if the either of the X1 \rightarrow Y2 or X2 \rightarrow Y1 already exist)

Repeat until the network is "well randomized"

Motifs in transcriptional regulatory networks

- E. Coli network
 - 424 operons (116 TFs)
 - 577 interactions

Motifs in transcriptional regulatory networks

Human cell-specific networks

What's so interesting about FFLs

A coherent feed-forward loop can act as a circuit that rejects transient activation signals from the general transcription factor and responds only to persistent signals, while allowing for a rapid system shutdown.

Network motifs in biological networks

			les 1			1150			371 -	/	
Network	Nodes	Edges	N _{real}	$N_{\text{rand}} \pm \text{SD}$	Z score	N _{real}	$N_{\text{rand}} \pm \text{SD}$	Z score	N _{real}	$N_{\rm rand} \pm {\rm SD}$	Z score
Gene regulati (transcription				$\begin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{\Psi} \\ \mathbf{Z} \end{array}$	Feed- forward loop	X Z	W	Bi-fan			
E. coli	424	Why do	these	7 ± 3	10	203	47 ± 12	13			
S. cerevisiae*	685	networks	s have	11 ± 4	14	1812	300 ± 40	41	8		
Neurons 🔫		similar m		$\vec{\mathbf{v}}$ $\vec{\mathbf{v}}$ $\vec{\mathbf{v}}$ $\vec{\mathbf{v}}$ $\vec{\mathbf{v}}$	Feed- forward loop	X	Y W	Bi-fan		$\mathcal{L}_{N}^{\mathcal{L}}$	Bi- parallel
C. elegans ⁺	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs	netw	v is this vork so erent?		$egin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{\Psi} \end{array}$	Three chain	V Y N	ν μ ^z	Bi- parallel			
1			Z			6324	59				
			•	Z		W	7				
Little Rock	92	984	3219	$\frac{\mathbf{Z}}{3120\pm50}$	2.1	W 7295	2220 ± 210	25			
Little Rock Ythan			3219 1182		2.1 7.2	1000		25 23			
strategy and the second second second second second	92	984	103862 (103802) 2450	3120 ± 50	121201200	7295	2220 ± 210	100.012 - 5A			
Ythan	92 83	984 391	1182	$\begin{array}{c} 3120\pm50\\ 1020\pm20\end{array}$	7.2	7295 1357	$\begin{array}{c} 2220\pm210\\ 230\pm50 \end{array}$	23			
Ythan St. Martin	92 83 42	984 391 205	1182 469	3120 ± 50 1020 ± 20 450 ± 10	7.2 NS	7295 1357 382	$\begin{array}{c} 2220 \pm 210 \\ 230 \pm 50 \\ 130 \pm 20 \end{array}$	23 12			
Ythan St. Martin Chesapeake	92 83 42 31	984 391 205 67	1182 469 80	$\begin{array}{c} 3120 \pm 50 \\ 1020 \pm 20 \\ 450 \pm 10 \\ 82 \pm 4 \end{array}$	7.2 NS NS	7295 1357 382 26	$\begin{array}{c} 2220 \pm 210 \\ 230 \pm 50 \\ 130 \pm 20 \\ 5 \pm 2 \end{array}$	23 12 8			
Ythan St. Martin Chesapeake Coachella	92 83 42 31 29	984 391 205 67 243	1182 469 80 279	$\begin{array}{c} 3120 \pm 50 \\ 1020 \pm 20 \\ 450 \pm 10 \\ 82 \pm 4 \\ 235 \pm 12 \end{array}$	7.2 NS NS 3.6	7295 1357 382 26 181	$\begin{array}{c} 2220 \pm 210 \\ 230 \pm 50 \\ 130 \pm 20 \\ 5 \pm 2 \\ 80 \pm 20 \end{array}$	23 12 8 5			

Motif-based network super-families

R. Milo et al. Superfamilies of evolved and designed networks. Science, 2004

Computational representation of networks

Which is the most useful representation?

Generation of randomized networks

- Algorithm B (Generative):
 - Record marginal weights of original network
 - Start with an empty connectivity matrix *M*
 - Choose a row *n* & a column *m* according to marginal weights
 - If M_{nm} = 0, set M_{nm} = 1; Update marginal weights
 - Repeat until all marginal weights are 0
 - If no solution is found, start from scratch

