Biological Networks Analysis Degree Distribution and Network Motifs

Genome 559: Introduction to Statistical and Computational Genomics

Elhanan Borenstein

A quick review

- Ab initio gene prediction
- Parameters:

- Splice donor sequence model
- Splice acceptor sequence model
- Intron and exon length distribution
- Open reading frame
- More ...
- Markov chain
- States
- Transition probabilities
- Hidden Markov Model
(HMM)

A quick review

- Networks:
- Networks vs. graphs
- A collection of nodes and links
- Directed/undirected; weighted/non-weighted, ...

- Networks as models vs. networks as tools
- Many types of biological networks
- The shortest path problem
- Dijkstra's algorithm

1. Initialize: Assign a distance value, D, to each node.
 Set $D=0$ for start node and to infinity for all others.
2. For each unvisited neighbor of the current node: Calculate tentative distance, D^{t}, through current node and if $\mathrm{D}^{\mathrm{t}}<\mathrm{D}: \mathrm{D} \leftarrow \mathrm{D}^{\mathrm{t}}$. Mark node as visited.
3. Continue with the unvisited node with the smallest distance

Comparing networks

- We want to find a way to "compare" networks.
- "Similar" (not identical) topology
- "Common" design principles
- We seek measures of network topology that are:
- Simple
- Capture global organization
- Potentially "important"

Summary statistics
(equivalent to, for example, GC content for genomes)

Node degree / rank

- Degree = Number of neighbors

- Node degree in PPI networks correlates with:
- Gene essentiality
- Conservation rate
- Likelihood to cause human disease

Degree distribution

- $P(k)$: probability that a node has a degree of exactly k

- Common distributions:

Poisson:
$P(k)=\frac{e^{-d} d^{k}}{k!}$
Exponential:
$P(k) \propto e^{-k / d}$

Power-law:
$P(k) \propto k^{-c}, k \neq 0, c>1$

The power-law distribution

- Power-law distribution has a "heavy" tail!
- Characterized by a small number of highly connected nodes, known as hubs
- A.k.a. "scale-free" network

- Hubs are crucial:
- Affect error and attack tolerance of complex networks (Albert et al. Nature, 2000)

The Internet

- Nodes - 150,000 routers
- Edges - physical links
- $P(k) \sim k^{-2.3}$

Movie actor collaboration network

- Nodes - 212,250 actors
- Edges - co-appearance in a movie
- $P(k) \sim k^{-2.3}$

Protein protein interaction networks

- Nodes - Proteins
- Edges - Interactions (yeast)
- $P(k) \sim k^{-2.5}$

Metabolic networks

- Nodes - Metabolites
- Edges - Reactions
- $P(k) \sim k^{-2.2 \pm 2}$

Metabolic networks across all kingdoms of life are scale-free

Why do so many real-life networks exhibit a power-law degree distribution?

- Is it "selected for"?
- Is it expected by change?
- Does it have anything to do with the way networks evolve?
- Does it have functional implications?

Network motifs

- Going beyond degree distribution ...
- Generalization of sequence motifs
- Basic building blocks
- Evolutionary design principles?

What are network motifs?

- Recurring patterns of interaction (sub-graphs) that are significantly overrepresented (w.r.t. a background model)

13 possible 3-nodes sub-graphs
(199 possible 4-node sub-graphs)

Finding motifs in the network

1a. Scan all n-node sub-graphs in the real network
1b. Record number of appearances of each sub-graph (consider isomorphic architectures)
2. Generate a large set of random networks

3a. Scan for all n-node sub-graphs in random networks
3b. Record number of appearances of each sub-graph
4. Compare each sub-graph's data and identify motifs

Finding motifs in the network

A

Network randomization

- How should the set of random networks be generated?
- Do we really want "completely random" networks?
- What constitutes a good null model?

Network randomization

- How should the set of random networks be generated?
- Do we really want "completely random" networks?
- What constitutes a good null model?

Preserve in- and out-degree

Generation of randomized networks

Network randomization algorithm :

- Start with the real network and repeatedly swap randomly chosen pairs of connections $(\mathrm{X} 1 \rightarrow \mathrm{Y} 1, \mathrm{X} 2 \rightarrow \mathrm{Y} 2$ is replaced by $\mathrm{X} 1 \rightarrow \mathrm{Y} 2, \mathrm{X} 2 \rightarrow \mathrm{Y} 1)$

(Switching is prohibited if the either of the $X 1 \rightarrow Y 2$ or $X 2 \rightarrow Y 1$ already exist)
- Repeat until the network is "well randomized"

Motifs in

transcriptional regulatory networks

- E. Coli network
- 424 operons (116 TFs)
- 577 interactions
- Significant enrichment of motif \# 5

(40 instances vs. 7 ± 3)

Feed-Forward Loop (FFL)

Motifs in
 transcriptional regulatory networks

- Human cell-specific networks

What's so interesting about FFLs

A coherent feed-forward loop can act as a circuit that rejects transient activation signals from the general transcription factor and responds only to persistent signals, while allowing for a rapid system shutdown.

Network motifs in biological networks

Network	Nodes	Edges	$N_{\text {real }}$	$N_{\text {rand }} \pm$ SD	Z score	$N_{\text {real }}$	$N_{\text {rand }} \pm$ SD	Z score	$N_{\text {rea }}$	$N_{\text {rand }}{ }^{ \pm \text {SD }}$	Z score
Gene regulation (transcription)			$\begin{array}{\|ll} \hline \mathrm{X} & \text { Feed- } \\ V & \text { forward } \\ \mathrm{Y} & \text { loop } \\ \bigvee & \end{array}$								
E. coli 42 S. cerevisiae* 68		Why do these networks have		$\begin{aligned} & 7 \pm 3 \\ & 11 \pm 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$		$\begin{array}{r} 47 \pm 12 \\ 300 \pm 40 \\ \hline \end{array}$	$\begin{aligned} & 13 \\ & 41 \\ & \hline \end{aligned}$			
Neurons		similar	otifs?	$\begin{aligned} & \bar{Y} \\ & V \\ & \mathbf{Y} \\ & V \\ & \mathbf{Z} \end{aligned}$	Feedforward loop		$\underset{W}{V}$	Bi-fan		V V^{Z}	Biparallel
C. elegans \dagger	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs	Why netw diffe	is this ork so rent?		$\begin{aligned} & \hline \mathbf{X} \\ & V \\ & \mathbf{Y} \\ & \mathrm{~V} \\ & \mathbf{Z} \end{aligned}$	Three chain	\mathbf{Y}_{V}	$\begin{aligned} & V \\ & k^{Z} \end{aligned}$	Biparallel			
Little Rock	92	984	3219	3120 ± 50	2.1	7295	2220 ± 210	25			
Ythan	83	391	1182	1020 ± 20	7.2	1357	230 ± 50	23			
St. Martin	42	205	469	450 ± 10	NS	382	130 ± 20	12			
Chesapeake	31	67	80	82 ± 4	NS	26	5 ± 2	8			
Coachella	29	243	279	235 ± 12	3.6	181	80 ± 20	5			
Skipwith	25	189	184	150 ± 7	5.5	397	80 ± 25	13			
B. Brook	25	104	181	130 ± 7	7.4	267	30 ± 7	32			

Motif-based network super-families

R. Milo et al. Superfamilies of evolved and designed networks. Science, 2004

Computational representation of networks

- Which is the most useful representation?

Generation of randomized networks

- Algorithm B (Generative):
- Record marginal weights of original network
- Start with an empty connectivity matrix M
- Choose a row n \& a column m according to marginal weights
- If $\mathrm{M}_{\mathrm{nm}}=0$, set $\mathrm{M}_{\mathrm{nm}}=1$; Update marginal weights
- Repeat until all marginal weights are 0
- If no solution is found, start from scratch

	A	B	C	D	
A	0	0	0	0	1
B	0	0	0	0	0
C	0	0	0	0	2
D	0	0	0	0	2
	0	2	2	0	

	A	B	C	D	
A	0	0	0	0	1
B	0	0	0	0	0
C	0	0	0	0	2
D	0	0	0	0	2
	0	2	2	0	

	A	B	C	D	
A	0	0	0	0	1
B	0	0	0	0	0
C	0	1	0	0	1
D	0	0	0	0	2
	0	1	2	0	

