
Genome 559: Introduction to Statistical and
Computational Genomics

Elhanan Borenstein

Classes and Objects
Object Oriented Programming

A quick review
 A class defines variables’ types:

1. What kind of data is stored (members)

2. What are the available functions (methods)

 An object is an instance of a class:

 string is a class;
my_str = “AGGCGT” creates an object of the class string,
called my_str.

 Why classes:
 Bundle together data and operations on data

 Allow special operations appropriate to data

 Allow context-specific meaning for common operations

 Help organize your code and facilitates modular design

 The human factor

A Date class example
class Date:

 day = 0

 month = "None"

 def printUS(self):

 print self.month , "/" , self.day

 def printUK(self):

 print self.day , "." , self.month

mydate = Date()

mydate.day = 15

mydate.month= "Jan"

mydate.printUS()

Jan / 15

mydate.printUK()

15 . Jan

cl
as

s
fu

n
ct

io
n

s
(m

e
th

o
d

s)

Access (call)
functions of this

Date object

Where did the
argument go?

Define the class Date

Create and initialize
class members

Special name “self” refers to the
current object (no matter what

the caller named it).

Access data
members of this

Date object

An even better Date class
class Date:

 def __init__(self, day, month):

 self.day = day

 self.month = month

 def printUS(self):

 print self.mon , "/" , self.day

 def printUK(self):

 print self.day , "." , self.mon

mydate = Date(15,"Jan")

mydate.printUS()

Jan / 15

mydate2 = Date(22,“Nov")

mydate2.printUK()

22 . Nov

Note the magical first arguments:
__init__ defined w/ 3 args; called w/ 2;
printUS defined w/ 1 arg; called w/ 0.

mydate is passed in both cases as 1st arg, so
each function knows on which object it is to act

Special function “_ _init_ _” is called
whenever a Date object instance is

created. (class constructor)

It makes sure the object is
properly initialized

Now, when “constructing” a
new Date object, the caller
MUST supply required data

Class declarations and usage - Summary

 The class statement defines a new class

 Remember the colon and indentation

 You can include data members (variables) and
functions as part of your class. These will be accessed
using the dot (.) notation (e.g., mydate.day)

 The special name self means the current object

 self.<something> refers to instance variables of the class

 self is automatically passed to each method as a 1st
argument

class <class_name>:

 <statements>

 <statements> …

Second thoughts …
 True, we now have a “print” function, but can we

somehow make printing more intuitive?

 Specifically, why is “print” fine for numbers, strings,
etc.

 >>> my_str = “hello”

 >>> my_num = 5

 >>> print my_str, my_num

 “hello” 5

 but funky for class instances?
 >>> print mydate

 <__main__.Date instance at 0x247468>

 Yes, mydate.printUS() works, but seems clunky …

A better way to print objects
 Actually, “print” doesn’t have special knowledge of

how to print numbers, lists, etc.

 It just knows how to print strings, and relies on each
class to have a __str__() method that returns a
string representing the object.

 You can write your own, tailored __str__() method
to give prettier/more useful results

A super Date class
class Date:

 def __init__(self, day, month):

 self.day = day

 self.month = month

 def __str__(self) :

 day_str = ‘%s’ % self.day

 mon_str = self.month

 return mon_str + “-” + day_str

birthday = Date(3,”Sep”)

print “It’s ”, birthday, “. Happy Birthday!”

It’s Sep-3. Happy Birthday!

Advanced topic:
Allowing the plus sign

 Similarly, how come “+” works (but differently) for
numbers and strings but not for dates?

 Yes, we could write a function addDays(n) :
party = birthday.addDays(4)

 But … would be much more natural (and way cooler)
to be able to write:
party = birthday + 4

 Can we do it?

Operator overloading
 Yes! Again, ‘+’ isn’t as smart as you thought; it calls

class-specific “add” methods _ _add_ _() to do the
real work.

Operator overloading
 Yes! Again, ‘+’ isn’t as smart as you thought; it calls

class-specific “add” methods _ _add_ _() to do the
real work.

 We can make new classes, like Date, behave like built-
in ones

 Common operator overloading methods:
 _ _init_ _ # object creation

 _ _add_ _ # addition (+)

 _ _mul_ _ # multiplication (*)

 _ _sub_ _ # subtraction (-)

 _ _lt_ _ # less than (<)

 _ _str_ _ # printing

 _ _call_ _ # function calls

 Many more...

Sample problem #1
 Write a Python class called HL, which will be used to

include a horizontal line when you print.

 The class constructor should get a string s and an
integer l and when printed it should print l repetitions
of the string s (and the necessary newline characters).

>>> myHL1 = HL('=',20)

>>> print ‘Title', myHL1 , ‘The rest of the text'

Title

====================

The rest of the text

>>> myHL2 = HL('*-',5);

>>> print ‘Title', myHL2 , ‘The rest of the text'

Title

--*-*-*-

The rest of the text

class HL:

 def __init__(self,str,len):

 self.s = str

 self.l = len

 def __str__(self):

 line = self.s * self.l

 return '\n' + line + '\n'

Solution #1

Sample problem #2
 As you recall, python can print lists, as well as lists of

lists. For example:

>>> my_LOL = [[1,2,3] , [4,5,6] , [7,8,9]]

>>> print my_LOL

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Since we often use lists of lists to represent matrices,
we want a class that stores a list of lists, but that is
doing a better job in printing it. Implement a class that
gets a list of lists in the constructor, and then, when we
print an object of this class, the list of lists will be
printed as a matrix, as demonstrated below:

>>> my_matrix = NiceMatrix([[1,2,3] , [4,5,6] , [7,8,9]])

>>> print my_matrix

[1,2,3]

[4,5,6]

[7,8,9]

Sample problem #2 - hints
 Hint 1: Write a __str__ function to convert the list of

lists stored in the NiceMatrix object into a string.

 Hint 2: You can include newlines in the string to make it
look like a matrix.

 Hint 3: the function str(list) converts a simple list into a
string – try it.

Challenge Problem
 Overload the operator + for the Date class.

 Now try to overload the operator – for the Data class.
Note that there are two fundamentally different ways
to subtract dates:
1. Subtract a given number of days from one date to get another date

2. Subtract one date from another date to get the number of days
between these two dates.

Can you implement both?

