Artificial Neural Networks

Genome 559: Introduction to Statistical and Computational Genomics

Elhanan Borenstein

Some slides adapted from Geoffrey Hinton and Igor Aizenberg
A quick review

- Ab initio gene prediction
 - Parameters:
 - Splice donor sequence model
 - Splice acceptor sequence model
 - Intron and exon length distribution
 - Open reading frame
 - More ...
 - Markov chain
 - States
 - Transition probabilities
 - Hidden Markov Model (HMM)
Machine learning

“A field of study that gives computers the ability to learn without being explicitly programmed.”

Arthur Samuel (1959)
Tasks best solved by learning algorithms

- **Recognizing patterns:**
 - Facial identities or facial expressions
 - Handwritten or spoken words

- **Recognizing anomalies:**
 - Unusual sequences of credit card transactions

- **Prediction:**
 - Future stock prices
 - Predict phenotype based on markers
 - Genetic association, diagnosis, etc.
Why machine learning?

- It is very hard to write programs that solve problems like recognizing a face.
 - We don’t know what program to write.
 - Even if we had a good idea of how to do it, the program might be horrendously complicated.
- Instead of writing a program by hand, we collect lots of examples for which we know the correct output
 - A machine learning algorithm then takes these examples, trains, and “produces a program” that does the job.
 - If we do it right, the program works for new cases as well as the ones we trained it on.
Why neural networks?

- One of those things you always hear about but never know exactly what they actually mean...
- A good example of a **machine learning** framework
- In and out of fashion ...
- An important part of machine learning history
- A powerful framework
The goals of neural computation

1. To understand how the brain actually works
 ▪ Neuroscience is hard!

2. To develop a new style of computation
 ▪ Inspired by neurons and their adaptive connections
 ▪ Very different style from sequential computation

3. To solve practical problems by developing novel learning algorithms
 ▪ Learning algorithms can be very useful even if they have nothing to do with how the brain works
How the brain works (sort of)

- Each neuron receives inputs from many other neurons
 - Cortical neurons use spikes to communicate
 - Neurons spike once they “aggregate enough stimuli” through input spikes
 - The effect of each input spike on the neuron is controlled by a synaptic weight. Weights can be positive or negative
 - Synaptic weights adapt so that the whole network learns to perform useful computations
- A huge number of weights can affect the computation in a very short time. Much better bandwidth than a computer.
A typical cortical neuron

- Physical structure:
 - There is one axon that branches
 - There is a dendritic tree that collects input from other neurons
 - Axons typically contact dendritic trees at synapses
 - A spike of activity in the axon causes a charge to be injected into the post-synaptic neuron
Idealized Neuron

- Basically, a weighted sum!

\[y = \sum_{i} x_i w_i \]
Adding bias

- Function does not have to pass through the origin

\[y = \sum_{i} x_i w_i - b \]
Adding an “activation” function

- The “field” of the neuron goes through an activation function

\[y = \Phi \left(\sum_{i} x_i w_i - b \right) \]
Common activation functions

- **Linear activation**
 \[\phi(z) = z \]

- **Logistic activation**
 \[\phi(z) = \frac{1}{1 + e^{-az}} \]

- **Threshold activation**
 \[\phi(z) = \text{sign}(z) = \begin{cases}
 1, & \text{if } z \geq 0, \\
 -1, & \text{if } z < 0.
\end{cases} \]

- **Hyperbolic tangent activation**
 \[\phi(u) = \tanh(\gamma u) = \frac{1 - e^{-2\gamma u}}{1 + e^{-2\gamma u}} \]
McCulloch-Pitts neurons

- Introduced in 1943 (and influenced Von Neumann!)
 - Threshold activation function
 - Restricted to binary inputs and outputs

\[z = \sum_{i} x_i w_i - b \]

\[y = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases} \]

\[
\begin{array}{c|c|c}
X_1 & X_2 & y \\
\hline
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
X_1 & X_2 & y \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
X_1 & X_2 & y \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

- $w_1 = 1, w_2 = 1, b = 1.5$
- $w_1 = 1, w_2 = 1, b = 0.5$

X_1 AND X_2

X_1 OR X_2
Beyond binary neurons

\[z = \sum_{i} x_i w_i - b \]

\[y = \begin{cases}
1 & \text{if } z > 0 \\
0 & \text{otherwise}
\end{cases} \]

\[y = \begin{cases}
1 & \text{if } z > 0 \\
0 & \text{otherwise}
\end{cases} \]
Beyond binary neurons

- A general classifier
 - The weights determine the slope
 - The bias determines the distance from the origin

But ... how would we know how to set the weights and the bias?
(note: the bias can be represented as an additional input)
Perceptron learning

- Use a "training set" and let the perceptron learn from its mistakes
 - Training set: A set of input data for which we know the correct answer/classification!
 - Learning principle: Whenever the perceptron is wrong, make a small correction to the weights in the right direction.

- Note: *Supervised* learning

- Training set vs. testing set
Perceptron learning

1. Initialize weights and threshold (e.g., use small random values).

2. Use input X and desired output d from training set

3. Calculate the actual output, y

4. Adapt weights: \(w_i(t+1) = w_i(t) + \alpha(d - y)x_i \) for all weights. \(\alpha \) is the learning rate (don’t overshoot)

Repeat 3 and 4 until the \(d - y \) is smaller than a user-specified error threshold, or a predetermined number of iterations have been completed.

If solution exists – guaranteed to converge!
Linear separability

- What about the XOR function?

- Or other non-linear separable classification problems such as:
Multi-layer feed-forward networks

- We can connect several neurons, where the output of some is the input of others.
Solving the XOR problem

- Only 3 neurons are required!!!
In fact ...

- With one hidden layer you can solve ANY classification task!

- But How do you find the right set of weights?

 (note: we only have an error delta for the output neuron)

- This problem caused this framework to fall out of favor ...
 ... until ...
Main idea:

- First propagate a training input data point forward to get the calculated output.
- Compare the calculated output with the desired output to get the error (delta).
- Now, propagate the error back in the network to get an error estimate for each neuron.
- Update weights accordingly.
Types of connectivity

- **Feed-forward networks**
 - Compute a series of transformations
 - Typically, the first layer is the input and the last layer is the output.

- **Recurrent networks**
 - Include directed cycles in their connection graph.
 - Complicated dynamics.
 - Memory.
 - More biologically realistic?
Computational representation of networks

List of edges: (ordered) pairs of nodes

\[(A,C), (C,B), (D,B), (D,C) \]

Connectivity Matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Object Oriented

Which is the most useful representation?