Complex (Biological) Networks

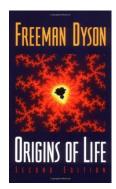
Analyzing Metabolic Networks

Elhanan Borenstein

Some slides are based on slides from courses given by Roded Sharan and Tomer Shlomi

<u>Metabolism</u>

"Metabolism is the process involved in the maintenance of life. It is comprised of a vast repertoire of enzymatic reactions and transport processes used to convert thousands of organic compounds into the various molecules necessary to support cellular life"


Schilling et al. 2000

Why study metabolism? (II)

It's the essence of life

(and maybe its origins)

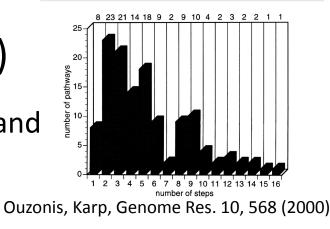
- Tremendous importance in Medicine
 - Inborn errors of metabolism cause acute symptoms
 - Metabolic diseases (obesity, diabetes) are on the rise (and are major sources of morbidity and mortality)
 - Metabolic enzymes becoming viable drug targets
- Bioengineering applications
 - Design strains for production of biological products
 - Generation of bio-fuels
- The best understood of all cellular networks

Metabolites & Biochemical Reactions

Metabolite: an organic substance

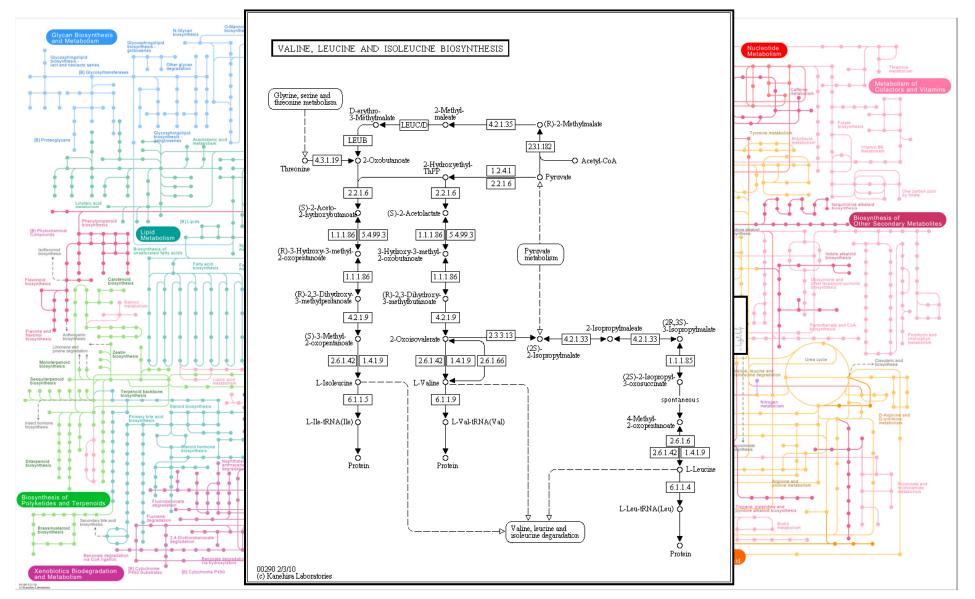
- Sugars (e.g., glucose, galactose, lactose)
- Carbohydrates (e.g., glycogen, glucan)
- Amino-acids (e.g., histidine, proline, methionine)
- Nucleotides (e.g., cytosine, guanine)
- Lipids
- Chemical energy carriers (e.g., ATP, NADH)
- Atoms (e.g., oxygen, hydrogen)

 Biochemical reaction: the process in which one or more substrate molecules are converted (usually with the help of an enzyme) to produce molecules

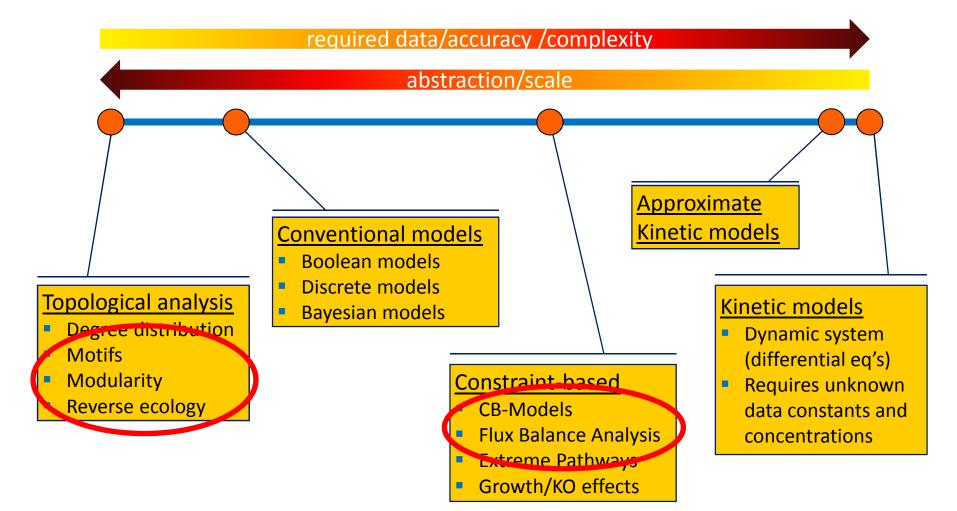

Pathways

EcoCyc describes 131 pathways

- Pathways vary in length from a single step to 16 steps (ave 5.4)
 - But ... no precise biological definition and partitioning of the metabolic network into pathways is somehow arbitrary _{Ouzo}


ose phosphate metabolism	Isoleucine biosynthesis
ropionate and 3-(3-hydroxyphenyl)propionate degradation	KDO biosynthesis
utyrate degradation ectron transfer	L-alanine degradation L-arabinose catabolism
spiration, electron donors reaction list	L-cysteine catabolism
synthesis	L-lyxose metabolism
electron transfer	L-serine degradation
respiration	Lactose degradation
respiration, electron acceptors reaction list	Leucine biosynthesis
respiration, electron donors reaction list	Lipid A precursor biosynthesis
iosynthesis	Lysine and diaminopimelate biosynthesis
e biosynthesis and degradation	Mannitol degradation
biosynthesis and degradation	Mannose and GDP-mannose metabolism
osynthesis	Mannose catabolism
is of proto- and siroheme	Menaquinone biosynthesis
ynthesis	Methionine biosynthesis
netabolism	Methyl-donor molecule biosynthesis
netabolism, CoA-linked	Methylglyoxal metabolism
i biosynthesis id biosynthesis	NAD phosphorylation and dephosphorylation
id biosynthesis itabolism	Nonoxidative branch of the pentose phospha Nucleotide metabolism
losvnthesis	O-antigen biosynthesis
e catabolism	Oxidative branch of the pentose phosphate p
ite catabolism	Pantothenate and coenzyme A biosynthesis
onate catabolism	Peptidoglycan biosynthesis
e catabolism	Phenylalanine biosynthesis
ate catabolism	Phenylethylamine degradation
on of short-chain fatty acids	Phosphatidic acid synthesis
midine nucleotide/side metabolism	Phospholipid biosynthesis
nucleotide metabolism	Polyamine biosynthesis
nnose biosynthesis	Polyisoprenoid biosynthesis
erial common antigen biosynthesis	ppGpp metabolism
in synthesis	Proline biosynthesis
udoroff pathway	Proline utilization
biosynthesis, initial steps	Propionate metabolism, methylmalonyl pathy
elongation, saturated	Purine biosynthesis
elongation, unsaturated oxidation pathway	Pyridine nucleotide cycling Pyridine nucleotide synthesis
on	Pyridoxal 5'-phosphate biosynthesis
biosynthesis	Pyridoxal 5'-phosphate biosynthesis Pyridoxal 5'-phosphate salvage pathway
biosynthesis	Pyrimidine biosynthesis
abolism	Pyrimidine ribonucleotide/ribonucleoside met
catabolism	Pyruvate dehydrogenase
te catabolism	Pyruvate oxidation pathway
metabolism	Removal of superoxide radicals
galactoside and glucose catabolism enesis	Rhamnose catabolism
enesis	Riboflavin, FMN and FAD biosynthesis
ne catabolism	Ribose catabolism
phosphate metabolism	Serine biosynthesis
biosynthesis	Sorbitol degradation
utilization	Sulfate assimilation pathway
biosynthesis	TCA cycle, aerobic respiration
utilization	Thiamine biosynthesis
e biosynthesis e-glutaredoxin redox reactions	Thioredoxin pathway Threonine biosynthesis
etabolism	Threonine catabolism
osynthesis	Trehalose biosynthesis
avage	Trehalose degradation, low osmolarity
biosynthesis	Tryptophan biosynthesis
catabolism	Tryptophan utilization
netabolism	Tyrosine biosynthesis
	Ubiquinone biosynthesis
cycle	UDP-N-acetylglucosamine biosynthesis
degradation	Valine biosynthesis
legradation	Xylose catabolism

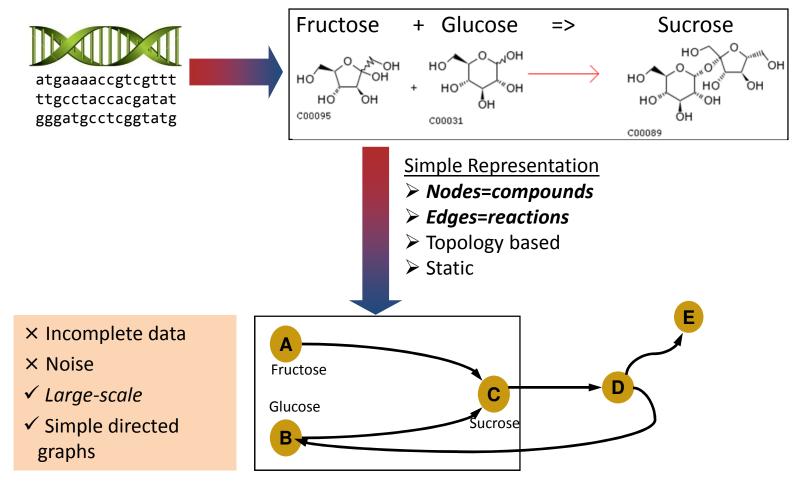
he reactions and enzymes within each pathway can be determined using the EcoCyc WWW server that is available a


http://www.genome.jp/kegg/pathway/map/map01100.html

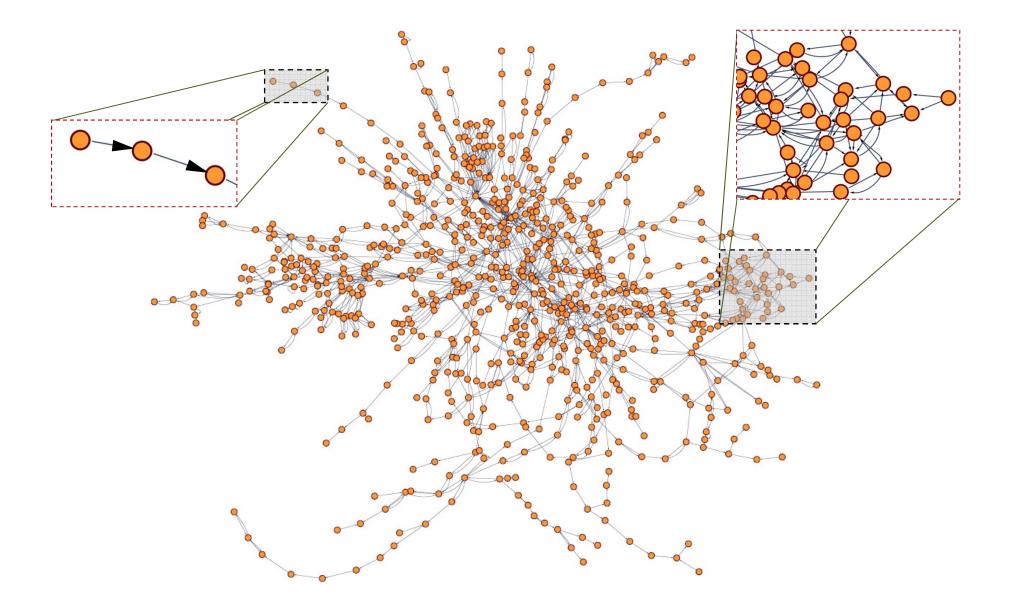
From Pathways to a Network

Models of Metabolism (and Metabolic Networks)

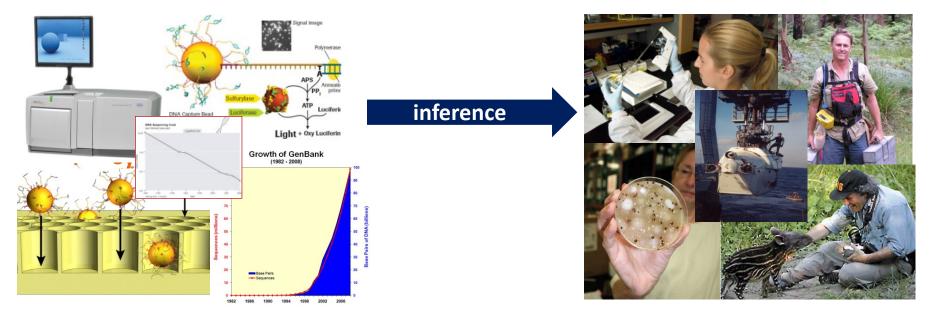
Metabolic Network Models



Reverse Ecology

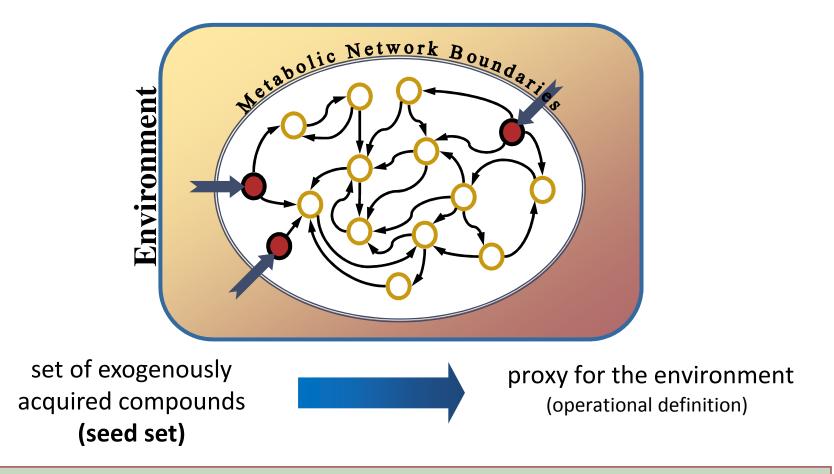

Reconstructing Metabolic Networks

Describing the chemical reactions in the cell and the compounds being consumed and produced


Metabolic Network (E.Coli)

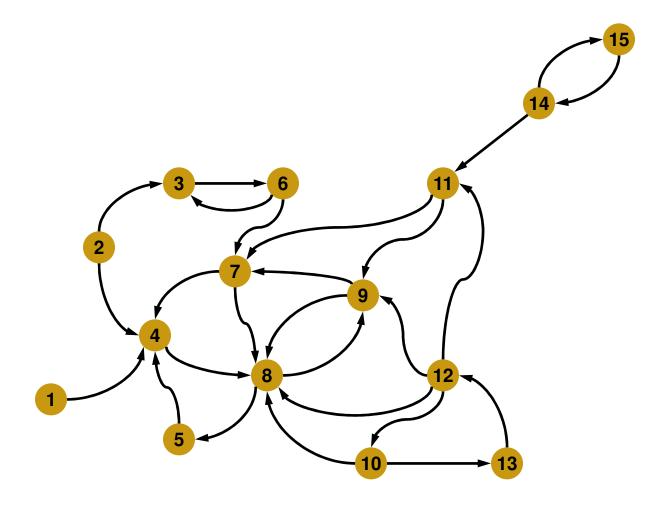
Environments from Networks

Can **the structure/topology** of metabolic networks be used to obtain insights into the **ecology** in which species evolved/prevail?

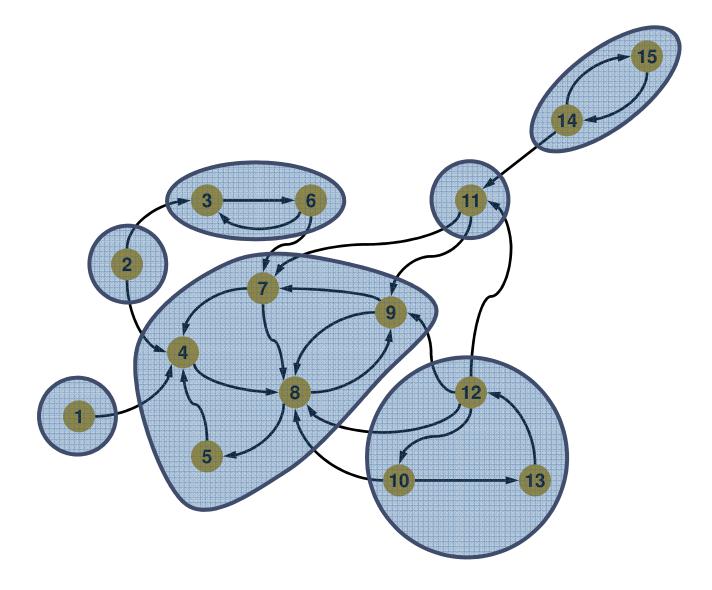


Reverse Ecology of Metabolic Environments

(Borenstein, et al. PNAS, 2008)

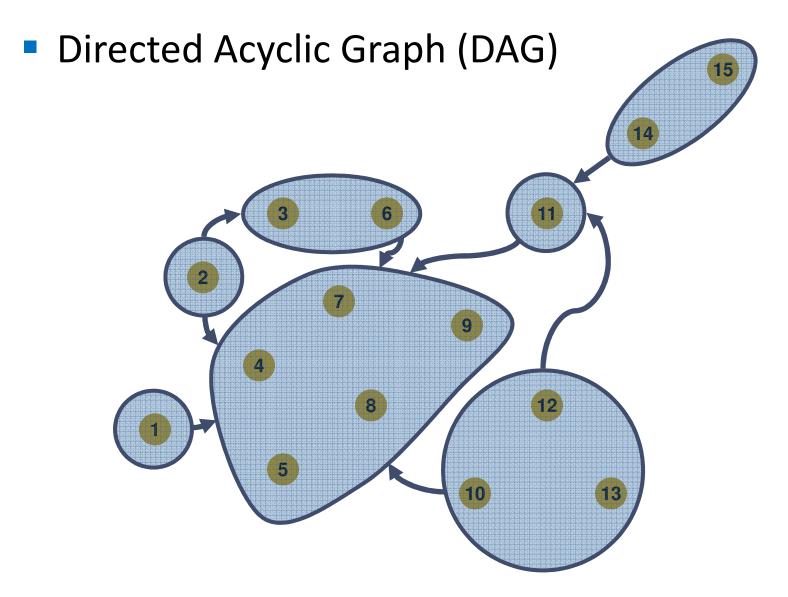


Seed Sets & Metabolic Environments


Seed set: a <u>minimal</u> subset of the compounds that <u>cannot be synthesized</u> from other compounds and whose existence permits the <u>synthesis of all other</u> <u>compounds</u> in the network.

Identifying Seed Compounds: A Simple Synthetic Example

Identifying Seed Compounds: Strongly Connected Components (SCC)

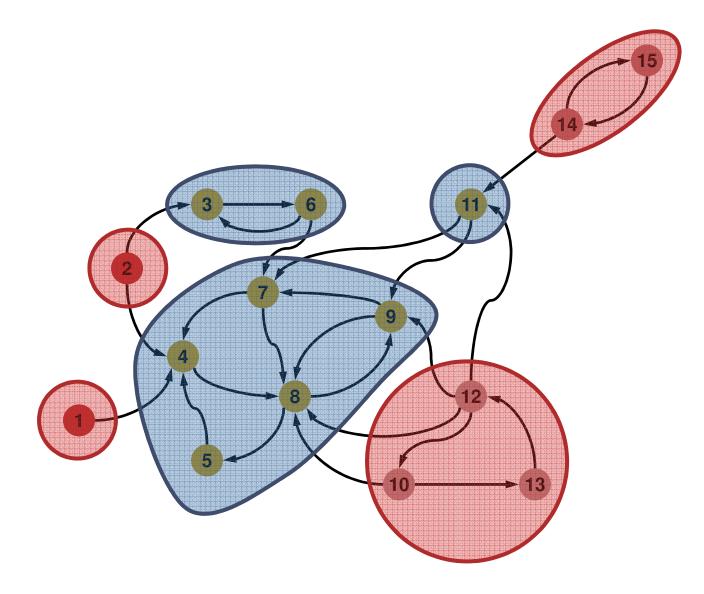

Kosaraju's algorithm for SCC Decomposition

- Given a graph G:
 - Run a Depth-First Search (DFS) on G to compute finishing times f[v] for each node v
 - 2. Calculate the **transposed network** G (the network G with the direction of every edge reversed)
 - Run DFS on G, traversing the nodes in decreasing order of f[v]
- Each tree in the DFS forest created by the second DFS run forms a separate SCC

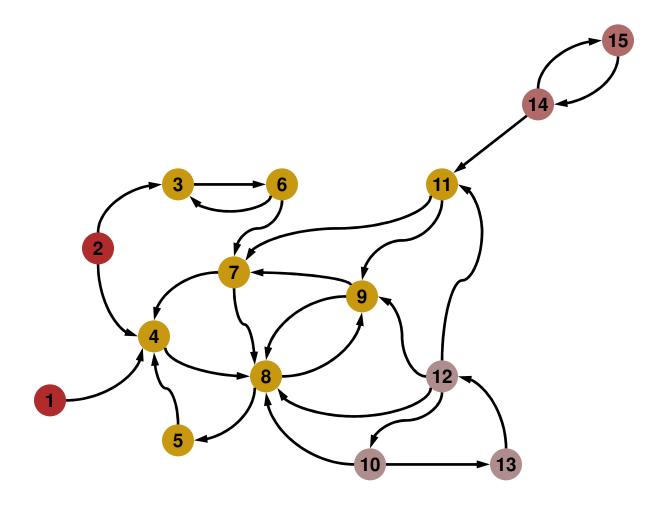
Identifying Seed Compounds: Strongly Connected Components (SCC)

SCCs are equivalent sets ("seed"-wise)

Identifying Seed Compounds: Strongly Connected Components (SCC)

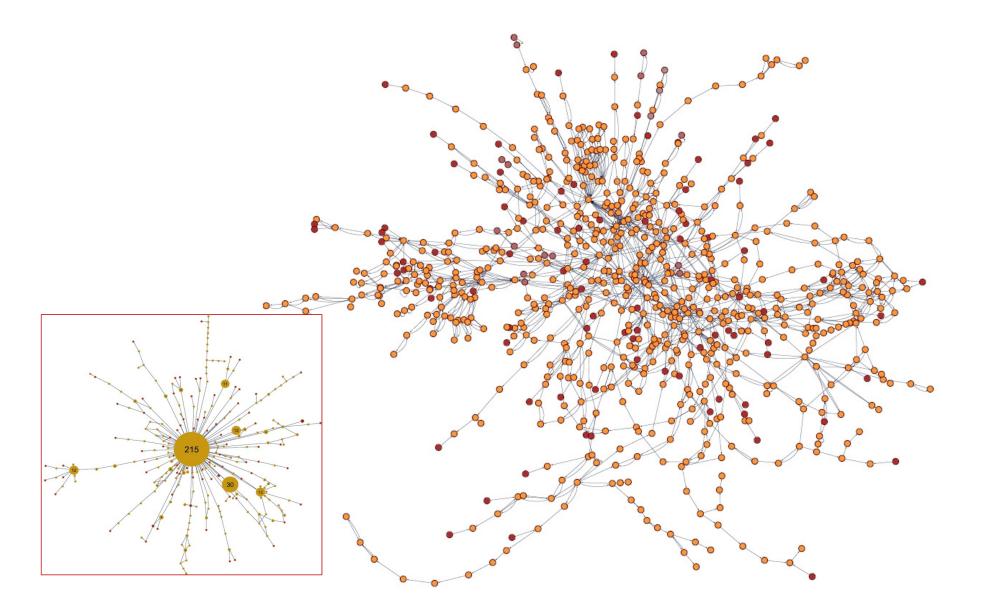

Identifying Seed Compounds: Source Components

EveSysBieLab


Candidate seeds are members of source components 11 12

Identifying Seed Compounds: Candidate Seeds

EveSysBieLab


Identifying Seed Compounds: Seed Confidence Level

Metabolic Network with Seeds

Multi-Species Large-Scale Seed Dataset

- 478 species (networks); >2200 compounds
- Seed compounds for each species

- Large-scale dataset of predicted metabolic environments
 - accuracy 79% precision 95% recall 67%

etabolic		Oxygen	L-Glutamate	Sulfate	Leucine	Sucrose	Glycerol		Methanol	Thymidine	
	B. aphidicola	-					-		-		
SS	S. pneumoniae			-			-		-		
ecie	R. typhi						-		-		
species	S. aureus						-		-		
478 9											
V	M. genitalium							· · · · · · · · · · · · · · · · · · ·			

2264 compounds

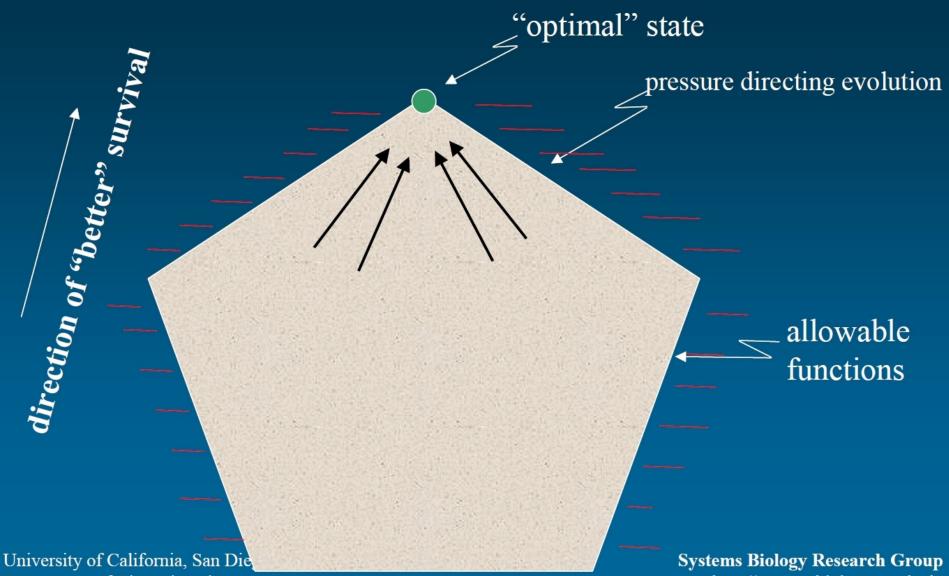
Applications of Reverse Ecology

- Reconstructing ecology-based phylogeny
- Predicting ancestral environments
- Identifying evolutionary dynamics of networks
- Predicting species interaction
- Analyzing genetic vs. environmental robustness
- Quantifying ecological strategies

Constraint-Based Modeling

Constraint-Based Modeling

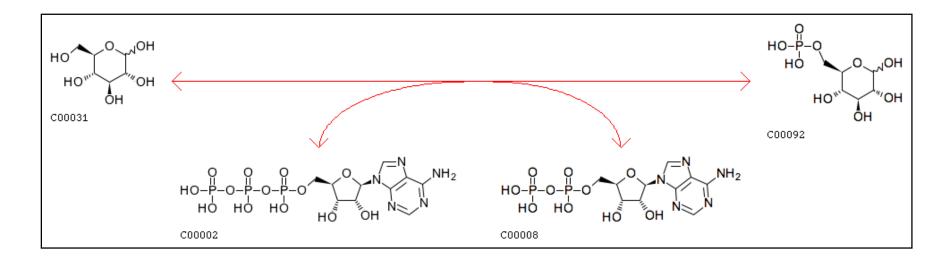
- Living systems obey physical and chemical laws
- These can be used to constrain the space of possible behaviors of the network



How often have I said to you that when you have eliminated the impossible, whatever remains, however improbable, must be the truth?

- Sherlock Holmes (A Study of Scarlet)

Evolution Under Constraints


Department of Bioengineering

http://systemsbiology.ucsd.edu

Reaction Stoichiometry

 Stoichiometry - the quantitative relationships of the reactants and products in reactions

1 Glucose + 1 ATP + 1 Glucose-6-Phosphate + 1 ADP

Stoichiometric Matrix

Abbreviation	Glycolytic reactions	Genes
HEX1	$[c]GLC + ATP \longrightarrow G6P + ADP + H$	glk
PGI	$[c]G6P \leftrightarrow F6P$	pgi
PFK	$[c]ATP + F6P \longrightarrow ADP + FDP + H$	pfkA, pfkB
FBA	$[c]FDP \leftrightarrow DHAP + G3P$	fbaA, fbaB
TPI	$[c]DHAP \longleftrightarrow G3P$	tpiA
GAPD	[c]G3P + NAD + PI ↔ 13DPG + H + NADH	gapA, gapC1, gapC2
PGK	$[c]13DPG + ADP \leftrightarrow 3PG + ATP$	pgk
PGM	[c]3PG ↔ 2PG	дртА, дртВ
ENO	$[c]$ 2PG \leftrightarrow H ₂ O + PEP	eno
PYK	$[c]ADP + H + PEP \longrightarrow ATP + PYR$	pykA, pykF

HEX1

PGI

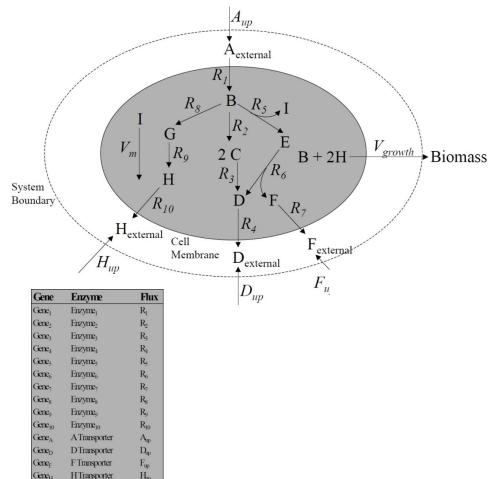
PFK

FBA

PGM

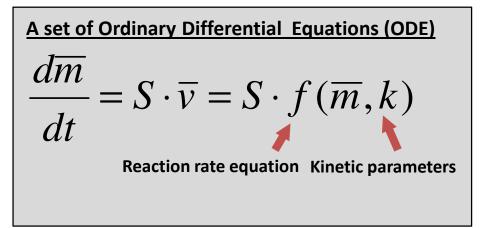
ENO

PYK


TPL

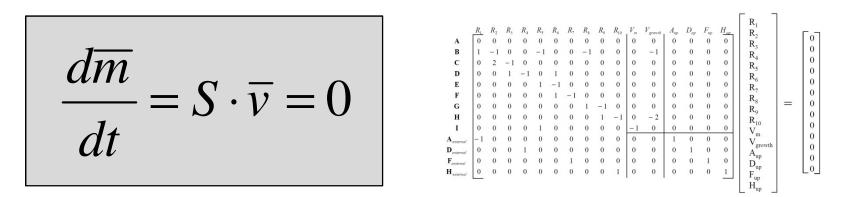
GAPD

	HEX1	PGI	PFK	FBA	TPI	GAPD	PGK	PGM	ENO	PYK
ATP	-1	0	-1	0	0	0	1	0	0	1
GLC	-1	0	0	0	0	0	0	0	0	0
ADP	1	0	1	0	0	0	-1	0	0	-1
G6P	1	-1	0	0	0	0	0	0	0	0
Н	1	0	1	0	0	1	0	0	0	-1
F6P	0	1	-1	0	0	0	0	0	0	0
FDP	0	0	1	-1	0	0	0	0	0	0
DHAP	0	0	0	1	-1	0	0	0	0	0
G3P	0	0	0	1	1	-1	0	0	0	0
NAD	0	0	0	0	0	-1	0	0	0	0
PI	0	0	0	0	0	-1	0	0	0	0
13DPG	0	0	0	0	0	1	-1	0	0	0
NADH	0	0	0	0	0	1	0	0	0	0
3PG	0	0	0	0	0	0	1	-1	0	0
2PG	0	0	0	0	0	0	0	1	-1	0
PEP	0	0	0	0	0	0	0	0	1	-1
H ₂ O	0	0	0	0	0	0	0	0	1	0
PYR	0	0	0	0	0	0	0	0	0	1


Stoichiometric Matrix and Fluxes

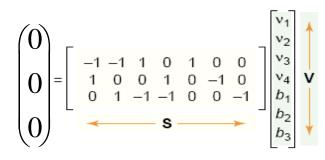
$$\frac{d\overline{m}}{dt} = S \cdot \overline{v}$$

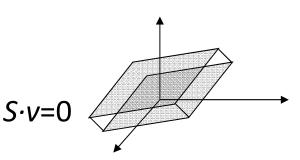
- m: metabolite concentrations vector (mol/mg)
- **S**: stoichiometric matrix
- v: reaction rates vector

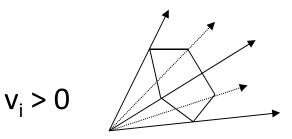

A Full Model? Not Really

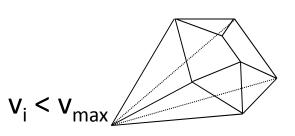
Requires knowledge of m, f and k!

Constraint-Based Modeling

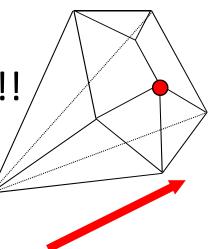

- Assumes a quasi steady-state!
 - No changes in metabolite concentrations
 - Metabolite production and consumption rates are equal


 No need for info on metabolite concentrations, reaction rate functions, or kinetic parameters

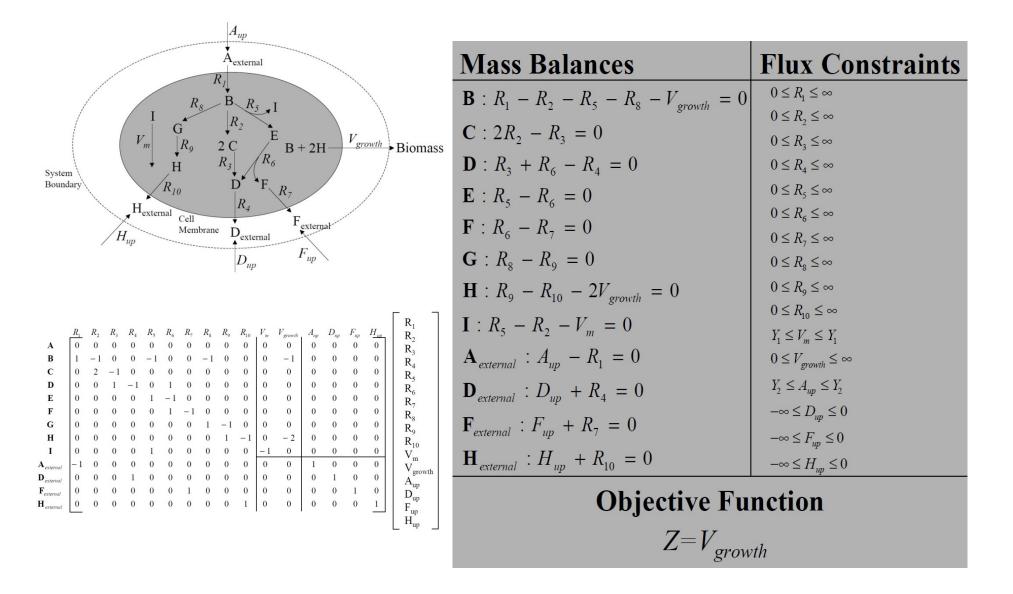

Constraint-Based Modeling


In most cases, S is underdetermined:
 → a subspace of Rⁿ (possible flux distributions)

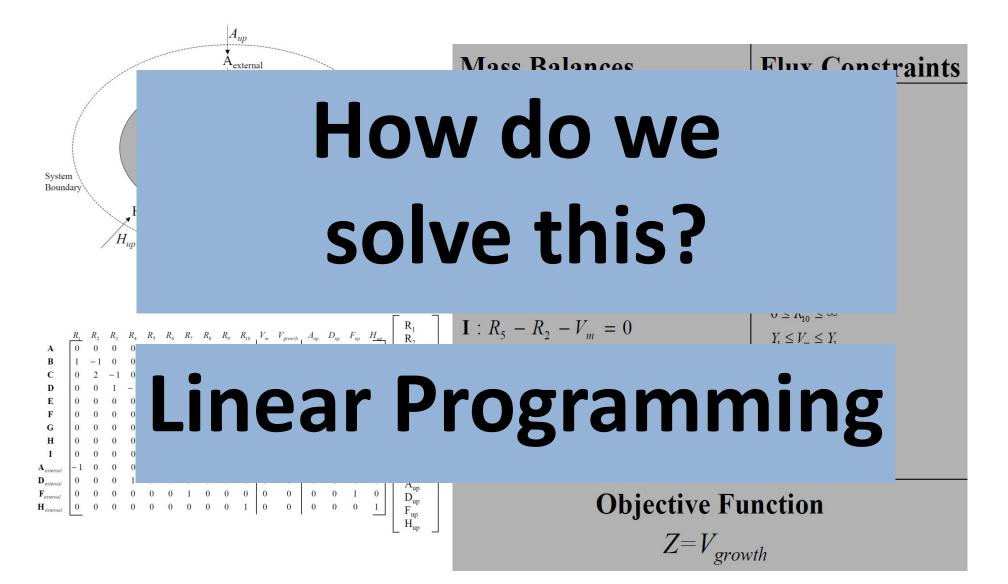
- Thermodynamic constraints:
 → a convex cone
- Capacity constraints:
 → a bounded convex cone



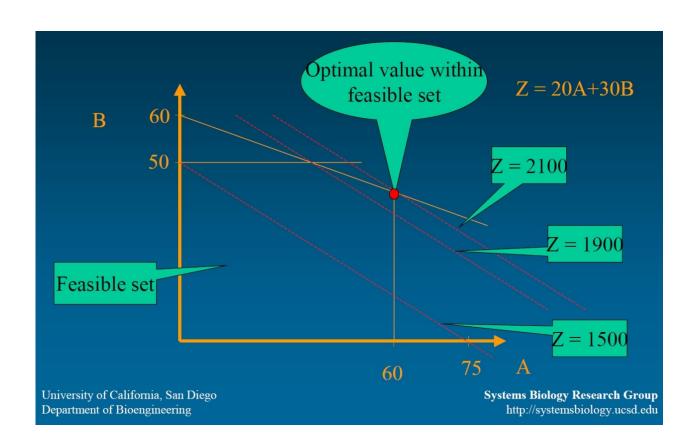
Flux Balance Analysis


But this still leaves a space of solutions

How can we identify plausible solutions within this space?


Optimize for maximum growth rate !!

Flux Balance Analysis



Flux Balance Analysis

Linear Programming (LP)

- Assume the following constraints:
 - 0<A<60
 - 0<B<50
 - A+2B<120</p>
- Optimize:
 - Z=20A+30B

Application of CBM & FBA

- Predict metabolic fluxes on various media
- Predict growth rate
- Predict gene knockout lethality
- Characterize solution space
- Many more ...

Available CBM Metabolic Models

Organism	Strain	Genes	Status	Version	Genes	Metabolites	Reactions
BACTERIA							
Acinetobacter baumannii	AYE	3,760	F	AbyMBEL891	650	778	891
Acinetobacter baylyi	ADP1	3,287	F	iAbaylyiV4	774	701	875
<u>Bacillus subtilis</u>		4,114	F	model_v3	844	988	1020
Bacillus subtilis		4,114	F		534	456	563
Bacillus subtilis	168	4,114	F	iBsu1103	1103	1138	1437
Buchnera aphidicola	APS	574	F	iGT196	196	240	263
<u>Clostridium acetobutylicum</u>	ATCC 824	3,848	F		474	422	552
Clostridium acetobutylicum	ATCC 824	3,848	F		432	479	502
Clostridium thermocellum	ATCC 27405	3,307	F	iSR432	432	525	577
Corynebacterium glutamicum	ATCC 13032	3,002	F			411	446
Corynebacterium glutamicum	ATCC 13032	3,002	F		227	423	502
Escherichia coli	K12 MG1655	4,405	F	iJE660	660	438	627
Escherichia coli	K12 MG1655	4,405	F	iJR904	904	625	931
Escherichia coli	K12 MG1655	4,405	F	iAF1260	1260	1039	2077
Geobacter metallireducens		3,532	F		747	769	697
Geobacter sulfurreducens		3,530	F		588	541	523
<u>Haemophilus influenzae</u>	Rd	1,775	F	iJE296	296	343	488
Haemophilus influenzae	Rd	1,775	F	iCS400	400	451	461
<u>Helicobacter pylori</u>	26695	1,632	F	iCS291	291	340	388
Helicobacter pylori	26695	1,632	F	iIT341	341	485	476
Lactobacillus plantarum	WCFS1	3,009	F		721	531	643
Lactococcus lactis	ssp. lactis IL1403	2,310	F		358	422	621
Mannheimia succiniciproducens	MBEL55E	2,384	F		335	332	373
Mannheimia succiniciproducens	MBEL55E	2,384	F		425	519	686
Mycobacterium tuberculosis	H37Rv	4,402	F	iNJ661	661	828	939
Mycobacterium tuberculosis	H37Rv	4,402	F	GSMN-TB	726	739	849
Mycoplasma genitalium	G-37	521	F	iPS189	189	274	262
<u>Neisseria meningitidis</u>	serogroup B	2,226	F		555	471	496
Porphyromonas gingivalis	W83	2,015	F	iVM679		564	679
<u>Pseudomonas aeruginosa</u>	PA01	5,640	F	iM01056	1056	760	883
<u>Pseudomonas putida</u>	KT2440	5,350	F	iNJ746	746	911	950
Pseudomonas putida	KT2440	5,350	F	iJP815	815	886	877
<u>Rhizobium etli</u>	CFN42	3,168	F	iOR363	363	371	387
Rhodoferax ferrireducens		4,770	F		744	790	762
Salmonella typhimurium	LT2	4,489	F	iRR1083	1083	774	1087
Salmonella typhimurium	LT2	4,489	F	iMA945	945	1036	1964
Staphylococcus aureus	N315	2,588	F	iSB619	619	571	641
Staphylococcus aureus	N315	2,588	F	iMH551	551	604	712
Staphylococcus aureus	N315	2,588	F		546	1431	1493
Streptococcus thermophilus	LMG18311	1,889	F		429		522
Streptomyces coelicolor	A3(2)	7,825	F		700	500	700
Streptomyces coelicolor	A3(2)	7,825	F		789	759	1015
<u>Synechocystis sp. PCC6803</u>	PCC 6803	3,221	F		633	704	831
<u>Thermotoga maritima</u>	MSB8	1,917	F		478	503	562
<u>Yersinia pestis</u>	91001	4,037	F	iAN818m	818	825	1020

Organism	Strain	Genes	Status	Version	Genes	Metabolites	Reactions
ARCHAEA							
Methanosarcina barkeri	Fusaro	5,072	F	/AF692	692	558	619
Halobacterium salinarum	R-1	2,867	F		490	557	711
EUKARYOTES							
Arabidopsis thaliana		27,379	F	AraGEM	1419	1748	1567
Aspergillus nidulans		9,451	F		666	732	794
<u>Homo sapiens</u>		28,783	F	Recon 1	1,496	2,766	3,311
Leishmania major	Friedlin	8,370	F	iAC560	560	1,101	1,112
Mus musculus		28,287	F		473	872	1,220
Mus musculus		28,287	F		724	1287	1494
Saccharomyces cerevisiae	Sc288	6,183	F	iFF708	708	584	1,175
Saccharomyces cerevisiae	Sc288	6,183	F	iND750	750	646	1,149
Saccharomyces cerevisiae	Sc288	6,183	F	iLL672	672	636	1,038
Saccharomyces cerevisiae	Sc288	6,183	F	iIN800	800	1013	1446
Saccharomyces cerevisiae	Sc288	6,183	F	iMM904	904	713	1,412

