Complex (Biological) Networks

Today: *Measuring Network Topology* **Thursday**: *Analyzing Metabolic Networks*

Elhanan Borenstein

Some slides are based on slides from courses given by Roded Sharan and Tomer Shlomi

Measuring Network Topology

- Introduction to network theory
- Global Measures of Network Topology
 - Degree Distribution
 - Clustering Coefficient
 - Average Distance
- Network Motifs
- Random Network Models

What is a Network?

- A collection of nodes and links (edges)
- A map of interactions or relationships

What is a Network?

- A collection of nodes and links (edges)
- A map of interactions or relationships

Networks vs. Graphs

Graph Theory

- Definition of a graph: G=(V,E)
 - V is the set of nodes/vertices (elements)
 - IV = N
 - E is the set of edges (relations)
- One of the most well studied objects in CS
 - Subgraph finding (e.g., clique, spanning tree) and alignment
 - Graph coloring and graph covering
 - Route finding (Hamiltonian path, traveling salesman, etc.)
- Many problems are proven to be NP-complete

Networks vs. Graphs

Network theory

Social sciences Biological sciences

Mostly 20th century

Modeling real-life systems

Measuring structure & topology

Graph theory

Computer science

Since 18th century!!!

Modeling abstract systems

Solving "graphrelated" questions

Why Networks?

The Seven Bridges of Königsberg

- Published by Leonhard Euler, 1736
- Considered the first paper in graph theory

Leonhard Euler 1707 –1783

Types of Graphs/Networks

- Edges:
 - Directed/undirected
 - Weighted/non-weighted
 - Simple-edges/Hyperedges

- Directed Acyclic Graphs (DAG)
- Trees _____
- Bipartite networks

Networks in Biology

- Molecular networks:
 - Protein-Protein Interaction (PPI) networks
 - Metabolic Networks
 - Regulatory Networks
 - Synthetic lethality Networks
 - Gene Interaction Networks
 - Many more ...

Metabolic Networks

- Reflect the set of biochemical reactions in a cell
 - Nodes: metbolites
 - Edges: biochemical reactions
 - Additional representations!
- Derived through:
 - Knowledge of biochemistry
 - Metabolic flux measurements

Protein-Protein Interaction (PPI) Networks

- Reflect the cell's molecular interactions and signaling pathways (interactome)
 - Nodes: proteins
 - Edges: interactions(?)
- High-throughput experiments:
 - Protein Complex-IP (Co-IP)
 - Yeast two-hybrid
 - Computationally

<u>S. Cerevisiae</u>

4389 proteins

14319 interactions

Transcriptional Regulatory Network

- Reflect the cell's genetic regulatory circuitry
 - Nodes: transcription factors (TFs) and genes;
 - Edges: from TF to the genes it regulates; Directed; weighted?; "almost" bipartite
- Derived through:
 - Chromatin IP
 - Microarrays
 - Computationally

Other Networks in Biology/Medicine

Non-Biological Networks

- Computer related networks:
 - WWW; Internet backbone
 - Communication and IP
- Social networks:
 - Friendship (facebook; clubs)
 - Citations / information flow
 - Co-authorships (papers); Co-occurrence (movies; Jazz)
- Transportation:
 - Highway system; Airline routes
- Electronic/Logic circuits
- Many more...

Global Measures of Network Topology

Comparing networks

- We want to find a way to "compare" networks.
 - "Similar" (not identical) topology
 - Common design principles

We seek measures of network topology that are:

Summary

statistics

- Simple
- Capture global organization
- Potentially "important"

(equivalent to, for example, GC content for genomes)

Node Degree / Rank

Degree = Number of neighbors

- Node degree in PPI networks correlates with:
 - Gene essentiality
 - Conservation rate
 - Likelihood to cause human disease

Degree Distribution

Degree distribution P(k):
 probability that a node has
 a degree of exactly k

Common distributions:

The Internet

- **Nodes** 150,000 routers
- Edges physical links

P(k) ~ k^{-2.3}

Movie Actor Collaboration Network

Tropic Thunder (2008)

- **Nodes** 212,250 actors
- Edges co-appearance in a movie
- (<k> = 28.78)
- P(k) ~ k^{-2.3}

Barabasi and Albert, Science, 1999

Protein Interaction Networks

- Nodes Proteins
- Edges Interactions (yeast)

Yook et al, Proteomics, 2004

Metabolic Networks

- Nodes Metabolites
- Edges Reactions
- P(k) ~ k^{-2.2±2}

Metabolic networks across all kingdoms of life are scale-free

Jeong et al., Nature, 2000

 $P(k) \propto k^{-c}$

The Power-Law Distribution

- Power-law distribution has a "heavy" tail!
 - Characterized by a small number of highly connected nodes, known as hubs
 - A.k.a. "scale-free" network

Hubs are crucial:

 Affect error and attack tolerance of complex networks (Albert et al. Nature, 2000)

Network Clustering

Clustering Coefficient (Watts & Strogatz)

Characterizes tendency of nodes to cluster

- "triangles density"
- How often do my friends know each other (think "facebook")

$$C_{i} = \frac{\text{\# of edges among neighbors}}{M \text{ ax. possible \# of edges among neighbors}} = \frac{2E_{i}}{d_{i}(d_{i}-1)}$$
$$C = \frac{1}{N} \sum_{v} C_{i}$$
 (if d_i = 0 or 1 then C_i is defined to be 0)

Clustering Coefficient: Example

- Lies in [0,1]
 - For cliques: C=1
 - For triangle-free graphs: C=0

Network Structure in Real Networks

Network	Size	$\langle k angle$	C	C_{rand}
WWW, site level, undir.	153, 127	35.21	0.1078	0.00023
Internet, domain level	3015 - 6209	3.52 - 4.11	0.18 - 0.3	0.001
Movie actors	225, 226	61	0.79	0.00027
LANL coauthorship	52,909	9.7	0.43	1.8×10^{-4}
MEDLINE coauthorship	1,520,251	18.1	0.066	1.1×10^{-5}
SPIRES coauthorship	56,627	173	0.726	0.003
NCSTRL coauthorship	11,994	3.59	0.496	3×10^{-4}
Math coauthorship	70,975	3.9	0.59	5.4×10^{-5}
Neurosci. coauthorship	209,293	11.5	0.76	5.5×10^{-5}
$E. \ coli$, substrate graph	282	7.35	0.32	0.026
E. coli, reaction graph	315	28.3	0.59	0.09
Ythan estuary food web	134	8.7	0.22	0.06
Silwood park food web	154	4.75	0.15	0.03
Words, cooccurence	460.902	70.13	0.437	0.0001
Words, synonyms	22,311	13.48	0.7	0.0006
Power grid	4,941	2.67	0.08	0.005
C. Elegans	282	14	0.28	0.05

Average Distance

Distance:

Length of shortest (**geodesic**) path between two nodes

 Average distance: average over all connected pairs

$$\ell = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i \ge j} d_{ij}$$

Small World Networks

- Despite their often large size, in most (real) networks there is a relatively short path between any two nodes
- "Six degrees of separation" (Stanley Milgram;1967)
- Collaborative distance:
 - Erdös number
 - Bacon number

Danica McKellar: 6

Daniel Kleitman: 3

Natalie Portman: 6

Additional Measures

- Network Modularity
- Giant component
- Betweenness centrality
- Current information flow
- Bridging centrality
- Spectral density

Network Motifs

Network Motifs

- Going beyond degree distribution ...
- Generalization of sequence motifs
- Basic building blocks
- Evolutionary design principles

R. Milo et al. Network motifs: simple building blocks of complex networks. Science, 2002

What are Network Motifs?

 Recurring patterns of interactions (*subgraphs*) that are significantly overrepresented (w.r.t. a background model)

R. Milo et al. Network motifs: simple building blocks of complex networks. Science, 2002

Finding motifs in the Network

- 1. Generate randomized networks
- 2a. Scan for all n-node subgraphs in the *real* network
- 2b. Record number of appearances of each subgraph (consider isomorphic architectures)
- 3a. Scan for all n-node sub graphs in random networks
- 3b. Record number of appearances of each subgraph
- 4. Compare each subgraph's data and choose motifs

Finding motifs in the Network

Network Randomization

- How should the set of random networks be generated?
- Do we really want "completely random" networks?
- What constitutes a good null model?

Preserve in- and out-degree

(For motifs with n>3 also preserve distribution of smaller sub-motifs)

Generation of Randomized Networks

- Algorithm A (Markov-chain algorithm):
 - Start with the real network and repeatedly swap randomly chosen pairs of connections
 (X1→Y1, X2→Y2 is replaced by X1→Y2, X2→Y1)
 - Repeat until the network is well randomized
 - Switching is prohibited if the either of the connections
 X1→Y2 or X2→Y1 already exist

Generation of Randomized Networks

- Algorithm B (Generative):
 - Record marginal weights of original network
 - Start with an empty connectivity matrix *M*
 - Choose a row *n* & a column *m* according to marginal weights
 - If M_{nm} = 0, set M_{nm} = 1; Update marginal weights
 - Repeat until all marginal weights are 0
 - If no solution is found, start from scratch

Exact Criteria for Network Motifs

- Subgraphs that meet the following criteria:
- 1. The probability that it appears in a randomized network an equal or greater number of times than in the real network is smaller than P = 0.01
- 2. The number of times it appears in the real network with distinct sets of nodes is at least 4
- 3. The number of appearances in the real network is significantly larger than in the randomized networks: (N_{real}-N_{rand}> 0.1N_{rand})

Feed-Forward Loops in Transcriptional Regulatory Networks

E. Coli network

- 424 operons (116 TFs)
- 577 interactions
- Significant enrichment of motif # 5

(40 instances vs. 7±3)

Coherent FFLs:

- The direct effect of x on z has the same sign as the **net** indirect effect through y
- 85% of FFLs are coherent

Feed-Forward Loop (FFL)

Master TF

What's So Cool about FFLs

A coherent feed-forward loop can act as a circuit that rejects transient activation signals from the general transcription factor and responds only to persistent signals, while allowing a rapid system shutdown.

Network Motifs in Biological Networks

Network	Nodes	Edges	N _{ren}	$N_{\rm rand} \pm {\rm SD}$	Z score	Nral	$N_{\rm Knd} \pm {\rm SD}$	Z score	N _{real}	$N_{\text{rand}} \pm \text{SD}$	Z score
Gene regulat (transcriptio	ion n) 424	519	40		Feed- forward loop	X 205	₩ ₩ 47±12	Bi-fan 13			
S. cereviside* Neurons	252	500	125	$ \begin{array}{c} \mathbf{X} \\ \mathbf{V} \\ \mathbf{Y} \\ \mathbf{Y} \\ \mathbf{V} \\ \mathbf{Z} \\ \mathbf{Z} \end{array} $	Feed- forward loop	1812 X Z	300 ± 40 Y W	41 Bi-fan	₩ ² Y _N	X = X V = Z $W = 35 \pm 10$	Bi- parallel
Food webs	232		125	\mathbf{X} $\mathbf{\Psi}$ \mathbf{Y} \mathbf{Y} \mathbf{V} \mathbf{Z}	Three chain		^x ν μ ^z	Bi- parallel	FFL unc	motif is ler-repres	sented!
Little Rock	92	984	3219	3120 ± 50	2.1	7225	2220 ± 210	25			
Ythan	83	391	1182	1020 ± 20	7.2	1357	230 ± 50	23			
St. Martin	42	205	469	450 ± 10	NS	382	130 ± 20	12			
Chesapeake	31	67	80	82 ± 4	NS	26	5 ± 2	8			
Coachella	29	243	279	235 ± 12	3.6	181	80 ± 20	5			
Skipwith	25	189	184	150 ± 7	5.5	397	80 ± 25	13			
B. Brook	25	104	181	130 ± 7	7.4	267	30 ± 7	32			

Information Flow vs. Energy Flow

Network	Nodes	Edges	N _{real}	$N_{\rm rand} \pm {\rm SD}$	Z score	N _{real}	$N_{\text{rand}} \pm \text{SD}$	Z score	N _{real}	$N_{\text{rand}} \pm \text{SD}$	Z score
Gene regulati (transcription	on 1)			$egin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{\Psi} \\ \mathbf{Z} \end{array}$	Feed- forward loop	X Z	Y W	Bi-fan			
E. coli S. cerevisiae*	424 685	519 1,052	40 70	$\begin{array}{c} 7\pm3\\ 11\pm4 \end{array}$	10 14	203 1812	$\begin{array}{c} 47\pm12\\ 300\pm40 \end{array}$	13 41			
Neurons				$egin{array}{c} \mathbf{X} \\ \mathbf{\psi} \\ \mathbf{Y} \\ \mathbf{\psi} \\ \mathbf{Z} \end{array}$	Feed- forward loop	X	Y W	Bi-fan	Y Y	\mathbb{Z}_{W}^{X}	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs		1			100	· · · · · · · · · · · · · · · · · · ·	T	D .	2		
				$\begin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{\Psi} \\ \mathbf{Z} \end{array}$	Three chain		ν μ ^Z	Bi- parallel	FFL unc	motif is ler-repres	ented!

Network Motifs in Technological Networks

Electronic c (forward log	ircuits ic chips)	\langle		$\begin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{\Psi} \\ \mathbf{V} \\ \mathbf{Z} \end{array}$	Feed- forward loop	X	Y W	Bi-fan		N Z K	Pi- parallel
s15850	10,383	14,240	424	2 ± 2	285	1040	1 ± 1	1200	480	2 ± 1	335
s38584	20,717	34,204	413	10 ± 3	120	1739	6 ± 2	800	711	9 ± 2	320
s38417	23,843	33,661	612	3 ± 2	400	2404	1 ± 1	2550	531	2 ± 2	340
s9234	5,844	8,197	211	2 ± 1	140	754	1 ± 1	1050	209	1 ± 1	200
s13207	8,651	11,831	403	2 ± 1	225	4445	1 ± 1	4950	264	2 ± 1	200
Electronic o (digital frac	ircuits tional multi	ipliers)	$ \begin{array}{c} X \\ \uparrow \\ Y \leftarrow \end{array} $	→ _ z	Three- node feedback loop	X	Y W	Bi-fan	x - x - z < z < z	$\rightarrow Y$ \downarrow -W	Four- node feedback loop
s208	122	189	10	1 ± 1	9	4	1 ± 1	3.8	5	1 ± 1	5
s420	252	399	20	1 ± 1	18	10	1 ± 1	10	11	1 ± 1	11
s838‡	512	819	40	1 ± 1	38	22	1 ± 1	20	23	1 ± 1	25
World Wide	Web			X ↓ Y ↓ Z	Feedback with two mutual dyads		$rac{1}{2}$ $rac{1}{2}$	Fully connected triad	$\begin{array}{c} \swarrow^X \\ Y \longleftrightarrow \end{array}$	× Z	Uplinked mutual dyad
nd.edu§	325,729	1.46e6	1.1e5	$2e3 \pm 1e2$	800	6.8e6	5e4±4e2	15,000	1.2e6	$1e4 \pm 2e$	2 5 <mark>000</mark>

Network Comparison: Motif-Based Network Superfamilies

R. Milo et al. Superfamilies of evolved and designed networks. Science, 2004

Evolutionary Conservation of Motif Elements

#	Motifs	Number of yeast motifs	Natural conservation rate	Random conservation rate	Conservation ratio
1	••	9,266	13.67%	4.63%	2.94
2	•••	167,304	4.99%	0.81%	6.15
3	*	3,846	20.51%	1.01%	20.28
4	**	3,649,591	0.73%	0.12%	5.87
5	**	1,763,891	2.64%	0.18%	14.67
6	**	9,646	6.71%	0.17%	40.44
7	**	164,075	7.67%	0.17%	45.56
8	**	12,423	18.68%	0.12%	157.89
9	**	2,339	32.53%	0.08%	422.78
10	**	25,749	14.77%	0.05%	279.71
11		1,433	47.24%	0.02%	2,256.67

Criticism of the Randomization Approach

- An incomplete null model?
- Local clustering:
 - Neighboring neurons have a greater chance of forming a connection than distant neurons
- Similar motifs are obtained in random graphs devoid of any selection rule
 - Gaussian toy network
 - Preferential-attachment rule

Y. Artzy-Randrup et al. Comment on "Network motifs: simple building blocks of complex networks".

Random Network Models

- 1. Random Graphs (Erdös/Rényi)
- 2. Geometric Random Graphs
- 3. The Small World Model (WS)
- 4. Preferential Attachment

Random Graphs (Erdös/Rényi)

- N nodes
- Every pair of nodes is connected with probability p

Random Graphs: Properties

- Mean degree: d = (N-1)p ~ Np
- Degree distribution is binomial
 - Asymptotically Poisson: $P(k) = {\binom{N-1}{k}} p^k (1-p)^{N-1-k} \approx \frac{d^k e^{-d}}{k!}$
- Clustering Coefficient:
 - The probability of connecting two nodes at random is p
 - → Clustering coefficient is C=p
 - In many large networks p \sim 1/n \rightarrow C is lower than observed
- Average distance:
 - I~In(N)/In(d) (think why?)
 - Small world! (and fast spread of information)

Geometric Random Graphs

- G=(V,r)
 - V set of points in a metric space (e.g. 2D)
 - E all pairs of points with distance \leq r
- Captures spatial relationships

The Small World Model (WS)

- Generate graphs with high clustering coefficients
 C and small distance I
- Rooted in social systems
- 1. Start with order (every node is connected to its K neighbors)
- 2. Randomize (rewire each edge with probability p)

Varying p leads to transition between order (p=0) and randomness (p=1)

Degree distribution is similar to that of a random graph!

Watts and Strogatz, Nature, 1998

The Scale Free Model: Preferential Attachment

- A generative model (dynamics)
 - Growth: degree-m nodes are constantly added
 - Preferential attachment: the probability that a new node connects to an existing one is proportional to its degree

$$P(u \text{ connects to } v) = \frac{d(v)}{\sum d(v)}$$

"The rich get richer" principle

$$P(k) = \frac{2m(m+1)}{(k+2)(k+1)k} \sim k^{-3}$$

Preferential Attachment: Clustering Coefficient

Preferential Attachment: Empirical Evidence

 Highly connected proteins in a PPI network are more likely to evolve new interactions

Wagner, A. Proc. R. Soc. Lond. B, 2003

Model Problems

- Degree distribution is fixed (although there are generalizations of this method that handle various distributions)
- Clustering coefficient approaches 0 with network size, unlike real networks
- Issues involving **biological** network growth:
 - Ignores local events shaping real networks (e.g., insertions/deletions of edges)
 - Ignores growth constraints (e.g., max degree) and aging (a node is active in a limited period)

Conclusions

- No single best model!
 - Models differ in various network measures
 - Different models capture different attributes of real networks
- In literature, "random graphs" are most commonly used

Computational <u>Representation of Networks</u>

Which is the most useful representation?