Complex (Biological) Networks

Today: Measuring Network Topology
Thursday: Analyzing Metabolic Networks

Some slides are based on slides from courses given by Roded Sharan and Tomer Shlomi



Measuring Network Topology

Introduction to network theory

Global Measures of Network Topology

= Degree Distribution
" Clustering Coefficient

= Average Distance

Network Motifs

Random Network Models



What is a Network?

= A collection of nodes and links (edges)
= A map of interactions or relationships
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Networks vs. Graphs

Graph Theory
Definition of a graph: G=(V,E)

= Vs the set of nodes/vertices (elements)
= [V]=N
= Eisthe set of edges (relations)

One of the most well studied objects in CS
= Subgraph finding (e.g., clique, spanning tree) and alignment
= Graph coloring and graph covering

= Route finding (Hamiltonian path, traveling salesman, etc.)

Many problems are proven to be NP-complete



Network theory Graph theory

Social sciences

: . ) Computer science
Biological sciences

Mostly 20t century Since 18% century!!!
Modeling real-life Modeling abstract
systems systems

Solving “graph-
related” questions

Measuring
structure & topology

V.9
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tworks as models

I

Simple, visual representation
of complex systems

y
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Why Networks?

Focus on organization
(rather than on components)

Networks as tools

I

Problem representation
(more common than you think)

I

Algorithm development

Discovery
(topology affects function)

I A

Predictive models
Y

Diffusion models

(dynamics)




Rri

= Published by Leonhard Euler, 1736
= Considered the first paper in graph theory

KONINGSBERGA

Leonhard Euler
1707 -1783



T f Graphs/Network

®
= Edges: "v@ 2 JON
= Directed/undirected/ 2 9 033

= Weighted/non-weighted =0

= Simple-edges/Hyperedges— | &%), g;:
T
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= Special topologies: &
= Directed Acyclic Graphs (DAG) —  |©&@ oo G2
(2)

= Trees — |
= Bipartite networks QQGQQQ

- BRRA




= Molecular networks:

Protein-Protein Interaction (PPI) networks
Metabolic Networks
Regulatory Networks

Gene Interaction Netwd

o’
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Many more ...



Metabolic Networks

= Reflect the set of biochemical reactions in a cell

" Nodes: metbolites METADOLICPATHWAYS _
= Edges: biochemical reactions
= Additional representations! Masbolmet §
= Derived through: @ sasimn
= Knowledge of biochemistry WW?W% &
= Metabolic flux measurements

I ¥ S. Cerevisiae
1062 metabolites
1149 reactions

Biosynthests of
Secondary Metabolites

01100 we0z




_Protein-Protein Interaction (PPI) Networks

= Reflect the cell’s molecular interactions and
signaling pathways (interactome)

= Nodes: proteins

= Edges: interactions(?)

" Yeast two-hybrid
= Computationally

¥ S. Cerevisiae
4389 proteins
14319 interactions




Transcriptional Regulatory Network

LiC1
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= Reflect the cell’s genetic T e
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Computer related networks:

= WWW,; Internet backbone
= Communication and IP

Social networks:

* Friendship (facebook; clubs)
= Citations / information flow
" CO'aUthorShipS (papers); Co-occurrence (movies; Jazz)

Transportation:

= Highway system; Airline routes
Electronic/Logic circuits
Many more...

Non-Biological Networks




Global Measures
of
Network Topology
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Comparing networks

= We want to find a way to “compare” networks.
= “Similar” (not identical) topology

= Common design principles

= We seek measures of network topology that are:

~
= Simple

N - |
= Capture global organization Summary
statistics

= Potentially “important”
~

(equivalent to, for example, GC content for genomes)



Node Degree / Rank

= Degree = Number of neighbors

* Node degree in PPl networks correlates with:

= Gene essentiality
= Conservation rate
= Likelihood to cause human disease
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Lethality and centrality in protein networks

% of essential prot
5
T
'_H
——
B ——
——
——t—

8
HH
—
—+—
——

L=}



= Degree distribution P(k):
probability that a node has
a degree of exactly k

= Common distributions:

Poisson: Exponential:
e’d" —k/d
P(k) = . P(k)xe

number of nodes

Power-law:

P(k)ock™ k#0,c>1

o A
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The Internet

= Nodes — 150,000 routers

0
= Edges — physical links 6
D (a)
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Govindan and Tangmunarunkit, 2000



Movie Actor Coll ration Network

10
= Nodes — 212,250 actors |
10% |
= Edges — co-appearancein
: __10°
a movie %)
£l 10°
= (<k>=28.78) i
= P(k) ~ k23 0° p
10.6 -0 l l““l1 ““]2 l 3
10 10 10 10

Barabasi and Albert, Science, 1999



= Nodes — Proteins
" Edges — Interactions (yeast)

= P(k) ~ k2

P(k)

Protein Interaction Networks
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Yook et al, Proteomics, 2004
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The Power-Law Distribut

P(k) oc k

[0]a

Power-law distribution has a “heavy” tail!

= Characterized by a small number of

highly connected nodes, known as hubs

= Ak.a. “scale-free” network

Hubs are crucial:

= Affect error and attack tolerance of

complex networks (aib

ert et al. Nature, 2000)
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Chromatin &
transcription
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vesicle
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Costanzo et al., Nature, 2010



Clustering Coefficient (Watts & Strogatz)

= Characterizes tendency of nodes to cluster
= “triangles density”

* How often do my friends know each other
(think “facebook”)

# of edges among neighbors 2E.

N M ax. possible# of edges among neighbors N d.(d. -1

1
C‘WZV:C‘

C.

(if d,=0 or 1 then C; is defined to be 0)




- o Coefficient: E I

= Liesin [0,1]
" For cliques: C=1
" For triangle-free graphs: C=0

(b)
C=10/10=1 C=3/10=0.3 C=0/10=0



Network Structure in Real Networks

Network

Size

WWW, site level, undir.

153, 127

Internet, domain level

3015 - 6209

3.52 -4.11

Movie actors 225, 226 61
LANL coauthorship 52,909 9.7
MEDLINE coauthorship| 1,520, 251 18.1
SPIRES coauthorship 56, 627 173
NCSTRL coauthorship 11,994 3.59
Math coauthorship 70,975 3.9
Neurosci. coauthorship | 209, 293 11.5
E. coli, substrate graph 282 1.35
E. coli, reaction graph 315 28.3
Ythan estuary food web 134 8.7
Silwood park food web 154 4.75
Words, cooccurence 460.902 T0:13
Words, synonyms 20, Sl 13.48
Power grid 4,941 2,07

C. Elegans 282 14

0.1078 | 0.00023
0.18 - 0.3] 0.001
0.79 0.00027
043 [1.8x 10™*
0.066 [1.1 x 10~°
0.726 0.003
0496 | 3x 10~*
0.59 |54x107°
0.76 |5.5x 10~°
0.32 0.026
0.59 0.09
0.22 0.06
0.15 0.03
0.437 0.0001
0.7 0.0006
0.08 0.005
0.28 0.05




Average Distance

= Distance:
Length of shortest (geodesic) path
between two nodes

= Average distance:
average over all connected pairs




g Small World Networks

= Despite their often large size, in most (real)
networks there is a relatively short path
between any two nodes £k

= “Six degrees of separation”
(Stanley Milgram;1967)

= Collaborative distance:

= Erdos number

= Bacon number

Daniel Kleitman: 3 Natélie Portman: 6



Additional Measures

Network Modularity
Giant component
Betweenness centrality
Current information flow
Bridging centrality
Spectral density



Network Motifs



Network Motifs

Going beyond degree distribution ...
Generalization of sequence motifs
Basic building blocks

Evolutionary design principles

R. Milo et al. Network motifs: simple building blocks of complex networks. Science, 2002



What are Network Motifs?

" Recurring patterns of interactions (subgraphs)
that are significantly overrepresented (w.r.t. a
background model)

sz s
DR

13 possible 3-nodes subgraphs
(199 possible 4-node subgraphs)

R. Milo et al. Network motifs: simple building blocks of complex networks. Science, 2002



Finding motifs in the Network

1. Generate randomized networks
2a. Scan for all n-node subgraphs in the real network

2b. Record number of appearances of each subgraph
(consider isomorphic architectures)

3a. Scan for all n-node sub graphs in random networks
3b. Record number of appearances of each subgraph

4. Compare each subgraph’s data and choose motifs



Finding motifs in the Network

B

randomized networks

real network




Network Randomization

* How should the set of random networks be generated?

= Do we really want “completely random” networks?

= What constitutes a good null model?

&

Preserve in- and out-degree

(For motifs with n>3 also preserve
distribution of smaller sub-motifs)



Generation of Randomized Networks

= Algorithm A (Markov-chain algorithm):

= Start with the real network and repeatedly swap randomly
chosen pairs of connections
(X12Y1, X2>Y2 is replaced by X12>Y2, X2->Y1)

= Repeat until the network is well randomized

= Switching is prohibited if the either of the connections
X1-2Y2 or X2->Y1 already exist

> D
%) ¥



Generation of Randomized Networks

= Algorithm B (Generative):

= Record marginal weights of original network

= Start with an empty connectivity matrix M

= Choose arow n & a column m according to marginal weights
= IfM,,=0,set M, =1; Update marginal weights

= Repeat until all marginal weights are 0

= |f no solution is found, start from scratch

_|A/BICID] NN AlBICID| NN |ABICID| |

A B Ao0O10 AO0OOOR Aofdo olf
BO0oOOOI[@ BO0oOOOI[@ B oo old

l Y co1o00[2 coooo[2 colooo 2

C'~—DpD Do11o0f2 Dooo o2 D o @
0220 0220




Exact Criteria for Network Motifs

= Subgraphs that meet the following criteria:

1. The probability that it appears in a randomized network an
equal or greater number of times than in the real network is
smaller than P =0.01

2. The number of times it appears in the real network with
distinct sets of nodes is at least 4

3. The number of appearances in the real network is significantly
larger than in the randomized networks: (N, .,—N,.,4> 0.1N . 4)



Feed-Forward Loops
in Transcriptional Regulatory Networks

= E. Coli network

= 424 operons (116 TFs)
= 577 interactions

= Significant enrichment of motif # 5 — X' Master TF
o |

(40 instances vs. 7+3) .A : ‘ Y Specific TF

- Z Target

= Coherent FFLs:

= The direct effect of x on z has the same
sign as the net indirect effect through y

= 85% of FFLs are coherent

Feed-Forward Loop
(FFL)

S. Shen-Orr et al. Nature Genetics 2002



What’s So Cool about FFLs
input i IH}"P‘”X o -dY/dBt’(loll%?(r,]TyK)ing\c(ics

1 |dz/dt=F(X,T,)F(Y,T,)-az

Y
o5 Y
AND 0 | | |
0 2 4 6 8
z 1r output Z
=05+
| N d
0
Output 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

time




Network Motifs in Biological Network

Network Nodes Edges I N Z score | Nieal Nrand=SD  Zscore

Bi-fan

Gene regulation Feed-

(transcription) forward

loop
E. coli 424 10
S. cerevisiae™ 685 14
Neurons Feed- X Bi-

forward Yo N\ parallel

loo 4 Z

P Ny~
W
C. eleganst 252
Food webs
FFL motif is
under-represented!

Little Rock 92
Ythan 83 391 1020 + 20 : 3 2
St. Martin 42 205 469 450+ 10 NS 8 2
Chesapeake 31 67 80 82+4 NS 26 Sk 8
Coachella 29 243 279 235412 3.6 181 80 +20 5
Skipwith 25 189 184 150 +7 5.5 397 80 + 25 13
B. Brook 25 104 181 18017 74 267 30+7 32




Information Flow vs. Energy Flow

Network Nodes Edges Necil NpandESD  Zscoie | Npeal. Npand =8P Z score | Nieal Nrand=SD  Zscore
Gene regulation X Feed- X ¥ Bi-fan
(transcription) V forward M
Y loop
\% Z W
Z
E. coli 424 519 |40 743 10 203 47412 13
S. cerevisiae®™ 685 1,052 70 11+4 14 1812 30040 41
Neurons X Feed- X b 4 Bi-fan X Bi-
V forward VN parallel
\}/ = z W N ¢
7 W
C. eleganst 252 509 125 90 £ 10 3.7 127 55+13 5.3 227 35410 20
Food webs X Three X Bi-
\V chain ¥ N parallel n .
% v 7 FFL motif is
V N\ ¥ under-represented!
V/ W
Little Rock 92 984 3219  3120+50 2.1 7295 2220+210 25
Ythan 83 391 1182 1020 + 20 7.2 1357 230+ 50 23
St. Martin 42 205 469 450 £ 10 NS 382 130 =20 12
Chesapeake 31 67 80 82+4 NS 26 k2 8
Coachella 29 243 279 23512 3 181 80 =20 5
Skipwith 25 189 184 150 + 7 55 397 80 £ 25 13
B. Brook 25 104 181 130 17 7.4 267 307 32




_Network Motifs in Technological Networks

Electronic circuits
(forward logic chips)

Feed-
forward
loop

s15850 10,383 14,240 242 285 480 V. | 335
s38584 20,717 34,204 | 413 10:£5 120 1739 6+2 800 711 92 320
s38417 23.843 33,661 | 612 ek 400 2404 I | 2550 531 22 340
$9234 5.844 8,197 | 211 2+1 140 754 1£1 1050 209 1.+1 200
s13207 8.651 11,831 § 403 21 225 4445 151 4950 264 2+1 200
Electronic circuits X Three- X Y Bi-fan X—>Y Four-
(digital fractional multipliers) ﬁ \ node /]\ \L node
feedback feedback
Y<— Z loop Z W Z<—W loop
s208 122 189 10 1] ) 4 I | 3.8 5 L1 5
s420 252 399 20 14 18 10 &1 10 11 1411 11
s838% 512 819 40 1+1 38 22 1+1 20 23 = 25
World Wide Web X Feedba Fully X Uplinked
@7 with t connected f ‘\ mutual
é mutu triad vy<—> 7 dyad
dyads
7 .
nd.edu§ 325,729 1.46e6 | 1.1e5 2e3+ 1e2 800 Sed+4e2 15,000 1.2e6 le4 £ 2e2 5000




Network Comparison:

Motif-Based Network Superfamilies

Triad Significance Profile

()]
R § /\
w
® = TRANSC-E.COLI
. & s 6w ow o o= = o~ TRANSC-YEAST
o, 0 8
220 L —+ TRANSC-YEAST-2
E =~ TRANSC-B.SUBTILIS
S 05
0.5
L —=— SIGNAL-TRANSDUCTION
o_ 0 5,0 o | — TRANSC-DROSOPHILA
A~ TRANSC-SEA-URCHIN
—s— NEURONS
4-0.5

—=— WWW-1 N=325,729

- WWW-2 N=277,114

—— WWW-3 N=47,870
=— SOCIAL-1 N=67

—&— SOCIAL-2 N=28

www.a

~
@ @ wwtv.b

—+— SOCIAL-3 N=32

%% =~ LANGUAGES: ENGLISH
MRS ~&— FRENCH
| 0 |+ SPANISH
nok<—ar - JAPANESE

|.0.5| == BIPARTITE MODEL

v7vAﬁgyavéva

R. Milo et al. Superfamilies of evolved and designed networks. Science, 2004



Evolutionary Conservation

of Motif Elem

ents

Natural Random
Number of conservation  conservation  Conservation

#  Motifs yeast motifs rate rate ratio

| ] 9,266 13.67% 4.63% 2.94
2 d‘b 167,304 4.99% 0.81% 6.15
3 & 3,846 20.51% 1.01% 20.28
4 R 3,649,591 0.73% 0.12% 5.87
8 n 1,763,891 2.64% 0.18% 14.67
6 n 9,646 6.71% 0.17% 40.44
7 ﬁ 164,075 7.67% 0.17% 45.56
8 & 12,423 18.68% 0.12% 157.89
g & 2,339 32.53% 0.08% 422 .78
10 Q 25,749 14.77% 0.05% 279.71
11 & 1,433 47.24% 0.02% 2,256.67

Wuchty et al. Nature Genetics, 2003



Criticism of the

= An incomplete null model?

= Local clustering:

Neighboring neurons have a
greater chance of forming a

connection than distant neurons

= Similar motifs are obtained
in random graphs devoid of

any selection rule

Gaussian toy network
Preferential-attachment rule

Randomization Approach

Gaussian “toy network"

Ll . . .

L] . . .
L] L . L

Probability>

P(d,) > P(d,)

-

d, d, Distance

Motif 'ﬁ O O O—>0
O—+»0—+»0 gxg g———yo
Feed-forward Bi-fan Bi-parallel

Observed 42 347 65

Mean 271 18.83 43.32

Std. 5.33 8.63 6.4

Z score 2.79 38.02 3.38

Y. Artzy-Randrup et al. Comment on “Network motifs:
simple building blocks of complex networks”.




Random Network Models




Random Graphs (Erdos/Rénvyi

= N nodes

= Every pair of nodes is connected with
probability p




Random Graphs: Properties

Mean degree: d = (N-1)p ~ Np

Degree distribution is binomial
= Asymptotically Poisson: P(k):[Nk_lj p“(1— p)N—l—kzO'kkel_d lA

Clustering Coefficient:
* The probability of connecting two nodes at random is p

= - Clustering coefficient is C=p
* |n many large networks p ~ 1/n = Cis lower than observed

Average distance:

= [~In(N)/In(d) .... (think why?)
= Small world! (and fast spread of information)



= G=(V,r)
= V —set of points in a metric space (e.g. 2D)
= E —all pairs of points with distance <r

= Captures spatial relationships



The Small World Model (WS)

" Generate graphs with high clustering coefficients
C and small distance /

= Rooted in social systems

1. Start with order (every node is connected to its K neighbors)
2. Randomize (rewire each edge with probability p)

Regular: Small World: Random:
High L, High C Low L, High C Low L, Low C

Varying p leads to transition between order (p=0) and randomness ﬁ=1 )

= Degree distribution is similar to that of a random graph!
Watts and Strogatz, Nature, 1998



The Scale Free Model:
Preferential Attachment

= A generative model (dynamics)

= Growth: degree-m nodes are constantly added

" Preferential attachment: the probability that a new node
connects to an existing one is proportional to its degree

P(uc

onnects to I‘) —

d(v)
Y d(v)

= “The rich get richer” principle

P(k) =

2m(m+1)

~(k+2)(k +Dk

~ k3

Albert and Barabasi, 2002



Preferential Attachment:

Clustering Coefficient

10" L O E
O ?
- g ~ N-0.75
O 40° /
O ]
10% O scale-free model /_
random graph ]
16”




Preferential Attachment:
Empirical Evidence

= Highly connected proteins in a PPl network are
more likely to evolve new interactions

0.4 ,’ °

0.3

0.2

0.1

probability of obtaining a new interaction

Wagner, A. Proc. R. Soc. Lond. B, 2003



Model Problems

= Degree distribution is fixed

(although there are generalizations of this method that handle
various distributions)

" Clustering coefficient approaches 0 with
network size, unlike real networks

" |ssues involving biological network growth:

" |gnores local events shaping real networks (e.g.,
insertions/deletions of edges)

" |gnores growth constraints (e.g., max degree) and aging (a
node is active in a limited period)



Conclusions

= No single best model!
= Models differ in various network measures

= Different models capture different attributes of
real networks

" |n literature, “random graphs” are most
commonly used






Computational
Representation of Networks

List/set of edges: Object Oriented

(ordered) pairs of nodes

Name:D Name:C

{(AQ),(CB),

ngr:
Name:A
ngr:

(D,B), (D,C) }

ngr:

&

= Which is the most useful representation?







