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Complex (Biological) Networks 
 

Some slides are based on slides from courses given by Roded Sharan and Tomer Shlomi 

Today: Measuring Network Topology 

Thursday: Analyzing Metabolic Networks 



Measuring Network Topology 

 Introduction to network theory 

 Global Measures of Network Topology 

 Degree Distribution 

 Clustering Coefficient 

 Average Distance 

 Network Motifs 

 Random Network Models 

  



What is a Network? 

 A collection of nodes and links (edges) 

 A map of interactions or relationships 



What is a Network? 

 A collection of nodes and links (edges) 

 A map of interactions or relationships 



Networks vs. Graphs 

 Graph Theory 

 Definition of a graph: G=(V,E) 
 V is the set of nodes/vertices (elements) 

 |V|=N 

 E is the set of edges (relations) 
 

 One of the most well studied objects in CS 
 Subgraph finding (e.g., clique, spanning tree) and alignment 

 Graph coloring and graph covering 

 Route finding (Hamiltonian path, traveling salesman, etc.)   

 Many problems are proven to be NP-complete 



Network theory Graph theory 

Social sciences 
Biological sciences 

Computer science 

Mostly 20th century Since 18th century!!! 

Modeling real-life 
systems 

Modeling abstract 
systems 

Measuring 
structure & topology 

Solving “graph-
related” questions 

Networks vs. Graphs 



Why Networks? 
Networks as tools Networks as models 

Diffusion models 
(dynamics) 

Predictive models 

Focus on organization 
(rather than on components) 

Discovery 
(topology affects function) 

Simple, visual representation 
of complex systems 

Algorithm development 

Problem representation 
(more common than you think) 



The Seven Bridges of Königsberg 

 Published by Leonhard Euler, 1736 

 Considered the first paper in graph theory 

 

Leonhard Euler 
1707 –1783  



Types of Graphs/Networks 

 Edges: 

 Directed/undirected 

 Weighted/non-weighted 

 Simple-edges/Hyperedges 

 

 Special topologies: 

 Directed Acyclic Graphs (DAG) 

 Trees 

 Bipartite networks 

 



Networks in Biology 

 Molecular networks: 

 Protein-Protein Interaction (PPI) networks 

 Metabolic Networks 

 Regulatory Networks 

 Synthetic lethality Networks 

 Gene Interaction Networks 

 Many more … 

 



Metabolic Networks 

 Reflect the set of biochemical reactions in a cell  
 Nodes: metbolites 

 Edges: biochemical reactions 

 Additional representations! 

 Derived through: 
 Knowledge of biochemistry  

 Metabolic flux measurements 

 

  
S. Cerevisiae 
1062 metabolites 
1149 reactions 



 Reflect the cell’s molecular interactions and 
signaling pathways (interactome) 
 Nodes: proteins  

 Edges: interactions(?) 

 High-throughput experiments: 
 Protein Complex-IP (Co-IP) 

 Yeast two-hybrid 

 Computationally 

 

 

Protein-Protein Interaction (PPI) Networks 

S. Cerevisiae 
4389 proteins 
14319 interactions 



Transcriptional Regulatory Network 

 Reflect the cell’s genetic  
regulatory circuitry 
 Nodes: transcription factors (TFs) 

and genes; 

 Edges: from TF to the genes it 
regulates; Directed; weighted?;  
“almost” bipartite  

 Derived through: 
 Chromatin IP  

 Microarrays 

 Computationally  

  



Other Networks in Biology/Medicine 



Non-Biological Networks 

 Computer related networks: 
 WWW; Internet backbone 

 Communication and IP 

 Social networks: 
 Friendship (facebook; clubs) 

 Citations / information flow 

 Co-authorships (papers); Co-occurrence (movies; Jazz) 

 Transportation: 
 Highway system; Airline routes 

 Electronic/Logic circuits 

 Many more… 



Global Measures  
of 

Network Topology 
 





Comparing networks 
 We want to find a way to “compare” networks. 

 “Similar” (not identical) topology 

 Common design principles 

 

 We seek measures of network topology that are: 

 Simple 

 Capture global organization 

 Potentially “important”  

      (equivalent to, for example, GC content for genomes) 

 

 

Summary 
statistics 



Node Degree / Rank  

 Degree = Number of neighbors 

 

 Node degree in PPI networks correlates with: 
 Gene essentiality 

 Conservation rate 

 Likelihood to cause human disease 

 



Degree Distribution  

 Degree distribution P(k):  
probability that a node has 
a degree of exactly k 

 

 Common distributions: 
 

 

 
 

Poisson: Exponential:  Power-law: 



The Internet 

 Nodes – 150,000 routers 

 Edges – physical links 

 

 P(k) ~ k-2.3 

 

Govindan and Tangmunarunkit, 2000 



Movie Actor Collaboration Network 

 Nodes – 212,250 actors 

 Edges – co-appearance in  
               a movie 

 (<k> = 28.78) 

 P(k) ~ k-2.3 

 
Barabasi and Albert, Science, 1999 

Tropic Thunder (2008) 



Protein Interaction Networks 

Yook et al, Proteomics, 2004 

 Nodes – Proteins 

 Edges – Interactions (yeast) 

 

 P(k) ~ k-2.5 

 



Metabolic Networks 

C.Elegans 
(eukaryote) 

E. Coli 
(bacterium) 

Averaged 
(43 organisms) 

A.Fulgidus 
(archae) 

Jeong et al., Nature, 2000 

 Nodes – Metabolites 

 Edges – Reactions 

 P(k) ~ k-2.2±2 

 

 

Metabolic networks  
across all kingdoms  
of life are scale-free 
 

 



The Power-Law Distribution 
( ) cP k k

 Power-law distribution has a “heavy” tail!  

 Characterized by a small number of  
highly connected nodes, known as hubs 

 A.k.a. “scale-free” network 

 
 

 Hubs are crucial: 

 Affect error and attack tolerance of  
complex networks (Albert et al. Nature, 2000) 



Network Clustering 

Costanzo et al., Nature, 2010 



  Characterizes tendency of nodes to cluster 

 “triangles density” 

 How often do my friends know each other 
(think “facebook”) 

 

 

 

 

     

Clustering Coefficient (Watts & Strogatz) 
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Clustering Coefficient: Example 

Ci=10/10=1 Ci=3/10=0.3 Ci=0/10=0 

  Lies in [0,1] 

 For cliques: C=1 

 For triangle-free graphs: C=0 

 

 



Network Structure in Real Networks 



Average Distance 

 Distance:  
 Length of shortest (geodesic) path  
 between two nodes 

  Average distance:  
 average over all connected pairs 



Small World Networks 

 Despite their often large size, in most (real) 
networks there is a relatively short path 
between any two nodes 
 

 “Six degrees of separation”  
(Stanley Milgram;1967) 
 

 Collaborative distance:  

 Erdös number 

 Bacon number  

 Danica McKellar: 6 

 Natalie Portman: 6 Daniel Kleitman: 3 



Additional Measures 

 Network Modularity 

 Giant component 

 Betweenness centrality 

 Current information flow 

 Bridging centrality 

 Spectral density 



Network Motifs 



Network Motifs 

 Going beyond degree distribution … 

 Generalization of sequence motifs 

 Basic building blocks 

 Evolutionary design principles 

 

R. Milo et al. Network motifs: simple building blocks of complex networks. Science, 2002 



What are Network Motifs? 

 Recurring patterns of interactions (subgraphs) 
that are significantly overrepresented (w.r.t. a 
background model) 

 

(199 possible 4-node subgraphs) 
R. Milo et al. Network motifs: simple building blocks of complex networks. Science, 2002 

13 possible 3-nodes subgraphs 



Finding motifs in the Network 

1. Generate randomized networks 

2a. Scan for all n-node subgraphs in the real network 

2b. Record number of appearances of each subgraph 
(consider isomorphic architectures)  

3a. Scan for all n-node sub graphs in random networks 

3b. Record number of appearances of each subgraph 

4. Compare each subgraph’s data and choose motifs 



Finding motifs in the Network 



 How should the set of random networks be generated? 
 

 Do we really want “completely random” networks? 
 

 What constitutes a good null model? 

 

 

Preserve in- and out-degree 
(For motifs with n>3 also preserve  
distribution of smaller sub-motifs) 

Network Randomization 



Generation of Randomized Networks 

 Algorithm A (Markov-chain algorithm): 
 Start with the real network and repeatedly swap randomly 

chosen pairs of connections 
(X1Y1, X2Y2 is replaced by X1Y2, X2Y1)  

 Repeat until the network is well randomized 

 Switching is prohibited if the either of the connections 
X1Y2 or X2Y1 already exist 

 
X1 

X2 Y2 

Y1 X1 

X2 Y2 

Y1 



Generation of Randomized Networks 

 Algorithm B (Generative): 
 Record marginal weights of original network 

 Start with an empty connectivity matrix M 

 Choose a row n & a column m according to marginal weights 

 If Mnm = 0, set Mnm = 1; Update marginal weights 

 Repeat until all marginal weights are 0 

 If no solution is found, start from scratch 

B 

C 

A 

D 

A B C D 
A 0 0 1 0 1 
B 0 0 0 0 0 
C 0 1 0 0 2 
D 0 1 1 0 2 

0 2 2 0 

A B C D 
A 0 0 0 0 1 
B 0 0 0 0 0 
C 0 0 0 0 2 
D 0 0 0 0 2 

0 2 2 0 

A B C D 
A 0 0 0 0 1 
B 0 0 0 0 0 
C 0 0 0 0 2 
D 0 0 0 0 2 

0 2 2 0 

A B C D 
A 0 0 0 0 1 
B 0 0 0 0 0 
C 0 1 0 0 1 
D 0 0 0 0 2 

0 1 2 0 



Exact Criteria for Network Motifs 

 Subgraphs that meet the following criteria: 

1. The probability that it appears in a randomized network an 
equal or greater number of times than in the real network is 
smaller than P = 0.01  

2. The number of times it appears in the real network with 
distinct sets of nodes is at least  4 

3. The number of appearances in the real network is significantly 
larger than in the randomized networks: (Nreal–Nrand> 0.1Nrand) 



 E. Coli network 
 424 operons (116 TFs)  

 577 interactions 

 Significant enrichment of motif # 5 

 
(40 instances vs. 7±3) 

 

 Coherent FFLs: 
 The direct effect of x on z has the same  

sign as the net indirect effect through y 

 85% of FFLs are coherent 

Feed-Forward Loops 
 in Transcriptional Regulatory Networks 

S. Shen-Orr et al. Nature Genetics 2002 

X 

Y 

Z 

Master TF 

Specific TF 

Target 

Feed-Forward Loop 
 (FFL) 



What’s So Cool about FFLs 

aZTYFTXFdtdZ

aYTXFdtdY
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A simple cascade has 
slower shutdown 

Boolean Kinetics 

A coherent feed-forward loop can act as a circuit that rejects transient 
activation signals from the general transcription factor and responds 
only to persistent signals, while allowing a rapid system shutdown. 



Network Motifs in Biological Networks 

FFL motif is  
under-represented! 



Information Flow vs. Energy Flow 

FFL motif is  
under-represented! 



Network Motifs in Technological Networks 



Network Comparison: 
Motif-Based Network Superfamilies 

R. Milo et al. Superfamilies of evolved and designed networks. Science, 2004 



Evolutionary Conservation 
of Motif Elements 

Wuchty et al. Nature Genetics, 2003 



 An incomplete null model?  

 Local clustering: 
 Neighboring neurons have a 

greater chance of forming a 
connection than distant neurons 

 Similar motifs are obtained 
in random graphs devoid of 
any selection rule 
 Gaussian toy network 

 Preferential-attachment rule 

Criticism of the  
Randomization Approach 

Y. Artzy-Randrup et al. Comment on “Network motifs: 
simple building blocks of complex networks”. 

Gaussian “toy network" 



Random Network Models 
 

1. Random Graphs (Erdös/Rényi)  

2. Geometric Random Graphs 

3. The Small World Model (WS) 

4. Preferential Attachment 



Random Graphs (Erdös/Rényi) 

 N nodes  

 Every pair of nodes is connected with 
probability p 



Random Graphs: Properties 

 Mean degree: d = (N-1)p ~ Np 

 Degree distribution is binomial  
 Asymptotically Poisson:  

 Clustering Coefficient: 
 The probability of connecting two nodes at random is p 

  Clustering coefficient is C=p 

 In many large networks p ~ 1/n  C is lower than observed 

 Average distance: 
 l~ln(N)/ln(d) …. (think why?) 

 Small world! (and fast spread of information) 
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Geometric Random Graphs 

 G=(V,r) 
 V – set of points in a metric space (e.g. 2D) 

 E – all pairs of points with distance ≤ r 

 Captures spatial relationships 



 Generate graphs with high clustering coefficients 
C and small distance l 

 Rooted in social systems 
 

1. Start with order (every node is connected to its K neighbors) 

2. Randomize (rewire each edge with probability p) 

 

 
 

 
 Degree distribution is similar to that of a random graph! 

The Small World Model (WS) 

Watts and Strogatz, Nature, 1998 

Varying p leads to transition between order (p=0) and randomness (p=1) 



 A generative model (dynamics) 
 Growth: degree-m nodes are constantly added 

 Preferential attachment: the probability that a new node 
connects to an existing one is proportional to its degree  

 

 

 “The rich get richer” principle 

The Scale Free Model: 
Preferential Attachment 
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Albert and Barabasi, 2002 



Preferential Attachment: 
Clustering Coefficient 

C ~ N-01 

C ~ N-0.75 



Preferential Attachment:  
Empirical Evidence 

 Highly connected proteins in a PPI network are 
more likely to evolve new interactions 

Wagner, A. Proc. R. Soc. Lond. B , 2003 



Model Problems 

 Degree distribution is fixed 
(although there are generalizations of this method that handle 
various distributions) 

 Clustering coefficient approaches 0 with 
network size, unlike real networks 

 Issues involving biological network growth: 
 Ignores local events shaping real networks (e.g., 

insertions/deletions of edges) 

 Ignores growth constraints (e.g., max degree) and aging (a 
node is active in a limited period) 

 



Conclusions 

 No single best model! 

 Models differ in various network measures 

 Different models capture different attributes of 
real networks 

 

 In literature, “random graphs” are most 
commonly used 
 





 Which is the most useful representation?  

Computational  
Representation of Networks 

B 

C 

A 

D 

A B C D 

A 0 0 1 0 

B 0 0 0 0 

C 0 1 0 0 

D 0 1 1 0 

Connectivity Matrix List/set of edges: 
(ordered) pairs of nodes 

 

{ (A,C) , (C,B) , 
(D,B) , (D,C) } 

Object Oriented 

Name:A 
ngr: 

p1 Name:B 
ngr: 

Name:C 
ngr: 

p1 

Name:D 
ngr: 

p1 p2 




