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Complex (Biological) Networks 
 

Some slides are based on slides from courses given by Roded Sharan and Tomer Shlomi 

Today: Measuring Network Topology 

Thursday: Analyzing Metabolic Networks 



Measuring Network Topology 

 Introduction to network theory 

 Global Measures of Network Topology 

 Degree Distribution 

 Clustering Coefficient 

 Average Distance 

 Network Motifs 

 Random Network Models 

  



What is a Network? 

 A collection of nodes and links (edges) 

 A map of interactions or relationships 
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Networks vs. Graphs 

 Graph Theory 

 Definition of a graph: G=(V,E) 
 V is the set of nodes/vertices (elements) 

 |V|=N 

 E is the set of edges (relations) 
 

 One of the most well studied objects in CS 
 Subgraph finding (e.g., clique, spanning tree) and alignment 

 Graph coloring and graph covering 

 Route finding (Hamiltonian path, traveling salesman, etc.)   

 Many problems are proven to be NP-complete 



Network theory Graph theory 

Social sciences 
Biological sciences 

Computer science 

Mostly 20th century Since 18th century!!! 

Modeling real-life 
systems 

Modeling abstract 
systems 

Measuring 
structure & topology 

Solving “graph-
related” questions 

Networks vs. Graphs 



Why Networks? 
Networks as tools Networks as models 

Diffusion models 
(dynamics) 

Predictive models 

Focus on organization 
(rather than on components) 

Discovery 
(topology affects function) 

Simple, visual representation 
of complex systems 

Algorithm development 

Problem representation 
(more common than you think) 



The Seven Bridges of Königsberg 

 Published by Leonhard Euler, 1736 

 Considered the first paper in graph theory 

 

Leonhard Euler 
1707 –1783  



Types of Graphs/Networks 

 Edges: 

 Directed/undirected 

 Weighted/non-weighted 

 Simple-edges/Hyperedges 

 

 Special topologies: 

 Directed Acyclic Graphs (DAG) 

 Trees 

 Bipartite networks 

 



Networks in Biology 

 Molecular networks: 

 Protein-Protein Interaction (PPI) networks 

 Metabolic Networks 

 Regulatory Networks 

 Synthetic lethality Networks 

 Gene Interaction Networks 

 Many more … 

 



Metabolic Networks 

 Reflect the set of biochemical reactions in a cell  
 Nodes: metbolites 

 Edges: biochemical reactions 

 Additional representations! 

 Derived through: 
 Knowledge of biochemistry  

 Metabolic flux measurements 

 

  
S. Cerevisiae 
1062 metabolites 
1149 reactions 



 Reflect the cell’s molecular interactions and 
signaling pathways (interactome) 
 Nodes: proteins  

 Edges: interactions(?) 

 High-throughput experiments: 
 Protein Complex-IP (Co-IP) 

 Yeast two-hybrid 

 Computationally 

 

 

Protein-Protein Interaction (PPI) Networks 

S. Cerevisiae 
4389 proteins 
14319 interactions 



Transcriptional Regulatory Network 

 Reflect the cell’s genetic  
regulatory circuitry 
 Nodes: transcription factors (TFs) 

and genes; 

 Edges: from TF to the genes it 
regulates; Directed; weighted?;  
“almost” bipartite  

 Derived through: 
 Chromatin IP  

 Microarrays 

 Computationally  

  



Other Networks in Biology/Medicine 



Non-Biological Networks 

 Computer related networks: 
 WWW; Internet backbone 

 Communication and IP 

 Social networks: 
 Friendship (facebook; clubs) 

 Citations / information flow 

 Co-authorships (papers); Co-occurrence (movies; Jazz) 

 Transportation: 
 Highway system; Airline routes 

 Electronic/Logic circuits 

 Many more… 



Global Measures  
of 

Network Topology 
 





Comparing networks 
 We want to find a way to “compare” networks. 

 “Similar” (not identical) topology 

 Common design principles 

 

 We seek measures of network topology that are: 

 Simple 

 Capture global organization 

 Potentially “important”  

      (equivalent to, for example, GC content for genomes) 

 

 

Summary 
statistics 



Node Degree / Rank  

 Degree = Number of neighbors 

 

 Node degree in PPI networks correlates with: 
 Gene essentiality 

 Conservation rate 

 Likelihood to cause human disease 

 



Degree Distribution  

 Degree distribution P(k):  
probability that a node has 
a degree of exactly k 

 

 Common distributions: 
 

 

 
 

Poisson: Exponential:  Power-law: 



The Internet 

 Nodes – 150,000 routers 

 Edges – physical links 

 

 P(k) ~ k-2.3 

 

Govindan and Tangmunarunkit, 2000 



Movie Actor Collaboration Network 

 Nodes – 212,250 actors 

 Edges – co-appearance in  
               a movie 

 (<k> = 28.78) 

 P(k) ~ k-2.3 

 
Barabasi and Albert, Science, 1999 

Tropic Thunder (2008) 



Protein Interaction Networks 

Yook et al, Proteomics, 2004 

 Nodes – Proteins 

 Edges – Interactions (yeast) 

 

 P(k) ~ k-2.5 

 



Metabolic Networks 

C.Elegans 
(eukaryote) 

E. Coli 
(bacterium) 

Averaged 
(43 organisms) 

A.Fulgidus 
(archae) 

Jeong et al., Nature, 2000 

 Nodes – Metabolites 

 Edges – Reactions 

 P(k) ~ k-2.2±2 

 

 

Metabolic networks  
across all kingdoms  
of life are scale-free 
 

 



The Power-Law Distribution 
( ) cP k k

 Power-law distribution has a “heavy” tail!  

 Characterized by a small number of  
highly connected nodes, known as hubs 

 A.k.a. “scale-free” network 

 
 

 Hubs are crucial: 

 Affect error and attack tolerance of  
complex networks (Albert et al. Nature, 2000) 



Network Clustering 

Costanzo et al., Nature, 2010 



  Characterizes tendency of nodes to cluster 

 “triangles density” 

 How often do my friends know each other 
(think “facebook”) 

 

 

 

 

     

Clustering Coefficient (Watts & Strogatz) 
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Clustering Coefficient: Example 

Ci=10/10=1 Ci=3/10=0.3 Ci=0/10=0 

  Lies in [0,1] 

 For cliques: C=1 

 For triangle-free graphs: C=0 

 

 



Network Structure in Real Networks 



Average Distance 

 Distance:  
 Length of shortest (geodesic) path  
 between two nodes 

  Average distance:  
 average over all connected pairs 



Small World Networks 

 Despite their often large size, in most (real) 
networks there is a relatively short path 
between any two nodes 
 

 “Six degrees of separation”  
(Stanley Milgram;1967) 
 

 Collaborative distance:  

 Erdös number 

 Bacon number  

 Danica McKellar: 6 

 Natalie Portman: 6 Daniel Kleitman: 3 



Additional Measures 

 Network Modularity 

 Giant component 

 Betweenness centrality 

 Current information flow 

 Bridging centrality 

 Spectral density 



Network Motifs 



Network Motifs 

 Going beyond degree distribution … 

 Generalization of sequence motifs 

 Basic building blocks 

 Evolutionary design principles 

 

R. Milo et al. Network motifs: simple building blocks of complex networks. Science, 2002 



What are Network Motifs? 

 Recurring patterns of interactions (subgraphs) 
that are significantly overrepresented (w.r.t. a 
background model) 

 

(199 possible 4-node subgraphs) 
R. Milo et al. Network motifs: simple building blocks of complex networks. Science, 2002 

13 possible 3-nodes subgraphs 



Finding motifs in the Network 

1. Generate randomized networks 

2a. Scan for all n-node subgraphs in the real network 

2b. Record number of appearances of each subgraph 
(consider isomorphic architectures)  

3a. Scan for all n-node sub graphs in random networks 

3b. Record number of appearances of each subgraph 

4. Compare each subgraph’s data and choose motifs 



Finding motifs in the Network 



 How should the set of random networks be generated? 
 

 Do we really want “completely random” networks? 
 

 What constitutes a good null model? 

 

 

Preserve in- and out-degree 
(For motifs with n>3 also preserve  
distribution of smaller sub-motifs) 

Network Randomization 



Generation of Randomized Networks 

 Algorithm A (Markov-chain algorithm): 
 Start with the real network and repeatedly swap randomly 

chosen pairs of connections 
(X1Y1, X2Y2 is replaced by X1Y2, X2Y1)  

 Repeat until the network is well randomized 

 Switching is prohibited if the either of the connections 
X1Y2 or X2Y1 already exist 

 
X1 

X2 Y2 

Y1 X1 

X2 Y2 

Y1 



Generation of Randomized Networks 

 Algorithm B (Generative): 
 Record marginal weights of original network 

 Start with an empty connectivity matrix M 

 Choose a row n & a column m according to marginal weights 

 If Mnm = 0, set Mnm = 1; Update marginal weights 

 Repeat until all marginal weights are 0 

 If no solution is found, start from scratch 

B 

C 

A 

D 

A B C D 
A 0 0 1 0 1 
B 0 0 0 0 0 
C 0 1 0 0 2 
D 0 1 1 0 2 

0 2 2 0 

A B C D 
A 0 0 0 0 1 
B 0 0 0 0 0 
C 0 0 0 0 2 
D 0 0 0 0 2 

0 2 2 0 

A B C D 
A 0 0 0 0 1 
B 0 0 0 0 0 
C 0 0 0 0 2 
D 0 0 0 0 2 

0 2 2 0 

A B C D 
A 0 0 0 0 1 
B 0 0 0 0 0 
C 0 1 0 0 1 
D 0 0 0 0 2 

0 1 2 0 



Exact Criteria for Network Motifs 

 Subgraphs that meet the following criteria: 

1. The probability that it appears in a randomized network an 
equal or greater number of times than in the real network is 
smaller than P = 0.01  

2. The number of times it appears in the real network with 
distinct sets of nodes is at least  4 

3. The number of appearances in the real network is significantly 
larger than in the randomized networks: (Nreal–Nrand> 0.1Nrand) 



 E. Coli network 
 424 operons (116 TFs)  

 577 interactions 

 Significant enrichment of motif # 5 

 
(40 instances vs. 7±3) 

 

 Coherent FFLs: 
 The direct effect of x on z has the same  

sign as the net indirect effect through y 

 85% of FFLs are coherent 

Feed-Forward Loops 
 in Transcriptional Regulatory Networks 

S. Shen-Orr et al. Nature Genetics 2002 

X 

Y 

Z 

Master TF 

Specific TF 

Target 

Feed-Forward Loop 
 (FFL) 



What’s So Cool about FFLs 
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A simple cascade has 
slower shutdown 

Boolean Kinetics 

A coherent feed-forward loop can act as a circuit that rejects transient 
activation signals from the general transcription factor and responds 
only to persistent signals, while allowing a rapid system shutdown. 



Network Motifs in Biological Networks 

FFL motif is  
under-represented! 



Information Flow vs. Energy Flow 

FFL motif is  
under-represented! 



Network Motifs in Technological Networks 



Network Comparison: 
Motif-Based Network Superfamilies 

R. Milo et al. Superfamilies of evolved and designed networks. Science, 2004 



Evolutionary Conservation 
of Motif Elements 

Wuchty et al. Nature Genetics, 2003 



 An incomplete null model?  

 Local clustering: 
 Neighboring neurons have a 

greater chance of forming a 
connection than distant neurons 

 Similar motifs are obtained 
in random graphs devoid of 
any selection rule 
 Gaussian toy network 

 Preferential-attachment rule 

Criticism of the  
Randomization Approach 

Y. Artzy-Randrup et al. Comment on “Network motifs: 
simple building blocks of complex networks”. 

Gaussian “toy network" 



Random Network Models 
 

1. Random Graphs (Erdös/Rényi)  

2. Geometric Random Graphs 

3. The Small World Model (WS) 

4. Preferential Attachment 



Random Graphs (Erdös/Rényi) 

 N nodes  

 Every pair of nodes is connected with 
probability p 



Random Graphs: Properties 

 Mean degree: d = (N-1)p ~ Np 

 Degree distribution is binomial  
 Asymptotically Poisson:  

 Clustering Coefficient: 
 The probability of connecting two nodes at random is p 

  Clustering coefficient is C=p 

 In many large networks p ~ 1/n  C is lower than observed 

 Average distance: 
 l~ln(N)/ln(d) …. (think why?) 

 Small world! (and fast spread of information) 
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Geometric Random Graphs 

 G=(V,r) 
 V – set of points in a metric space (e.g. 2D) 

 E – all pairs of points with distance ≤ r 

 Captures spatial relationships 



 Generate graphs with high clustering coefficients 
C and small distance l 

 Rooted in social systems 
 

1. Start with order (every node is connected to its K neighbors) 

2. Randomize (rewire each edge with probability p) 

 

 
 

 
 Degree distribution is similar to that of a random graph! 

The Small World Model (WS) 

Watts and Strogatz, Nature, 1998 

Varying p leads to transition between order (p=0) and randomness (p=1) 



 A generative model (dynamics) 
 Growth: degree-m nodes are constantly added 

 Preferential attachment: the probability that a new node 
connects to an existing one is proportional to its degree  

 

 

 “The rich get richer” principle 

The Scale Free Model: 
Preferential Attachment 
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Albert and Barabasi, 2002 



Preferential Attachment: 
Clustering Coefficient 

C ~ N-01 

C ~ N-0.75 



Preferential Attachment:  
Empirical Evidence 

 Highly connected proteins in a PPI network are 
more likely to evolve new interactions 

Wagner, A. Proc. R. Soc. Lond. B , 2003 



Model Problems 

 Degree distribution is fixed 
(although there are generalizations of this method that handle 
various distributions) 

 Clustering coefficient approaches 0 with 
network size, unlike real networks 

 Issues involving biological network growth: 
 Ignores local events shaping real networks (e.g., 

insertions/deletions of edges) 

 Ignores growth constraints (e.g., max degree) and aging (a 
node is active in a limited period) 

 



Conclusions 

 No single best model! 

 Models differ in various network measures 

 Different models capture different attributes of 
real networks 

 

 In literature, “random graphs” are most 
commonly used 
 





 Which is the most useful representation?  

Computational  
Representation of Networks 

B 

C 

A 

D 

A B C D 

A 0 0 1 0 

B 0 0 0 0 

C 0 1 0 0 

D 0 1 1 0 

Connectivity Matrix List/set of edges: 
(ordered) pairs of nodes 

 

{ (A,C) , (C,B) , 
(D,B) , (D,C) } 

Object Oriented 

Name:A 
ngr: 

p1 Name:B 
ngr: 

Name:C 
ngr: 

p1 

Name:D 
ngr: 

p1 p2 




