Scoring Alignments

Genome 373
Genomic Informatics
Elhanan Borenstein
A quick review

- The computational bottleneck
 - Scale of biological data

- Complexity of tasks
A quick review: Informatic challenges

- Sequence comparison:
 - Find the best alignment of two sequences
 - Find the best match (alignment) of a given sequence in a large dataset of sequences
 - Find the best alignment of multiple sequences
- Motif and gene finding
- Relationship between sequences
 - Phylogeny
- Clustering and classification
- Many many many more ...
A quick review: Informatic challenges

- Sequence comparison:
 - Find the best alignment of two sequences
 - Find the best match (alignment) of a given sequence in a large dataset of sequences
 - Find the best alignment of multiple sequences

- Motif and gene finding

- Relationship between sequences
 - Phylogeny

- Clustering and classification

- Many many many more...
Motivation

• Why compare two DNA or protein sequences?
Motivation

• Why compare two DNA or protein sequences?
 – Determine whether they are descended from a common ancestor (homologous)
 – Infer a common function
 – Locate functional elements (motifs or domains)
 – Infer protein or RNA structure, if the structure of one of the sequences is known
 – Analyze sequence evolution
 – Infer the species from which a sequence originated
 – Quantify abundance/coverage
One of many commonly used tools that depend on sequence alignment.
Sequence Comparison Challenges

- Find the best *global* alignment of two sequences

- Find the best *global* alignment of multiple sequences

- Find the best *local (partial)* alignment of two sequences

- Find the best match (alignment) of a given sequence in a longer dataset of sequences
Sequence Comparison Challenges

- **✓** Find the best *global* alignment of two sequences
- **✗** Find the best *global* alignment of multiple sequences
- **✓** Find the best *local (partial)* alignment of two sequences
- **✓** Find the best match (alignment) of a given sequence in a longer dataset of sequences
Global Alignment Mission:
Find the best global alignment between two sequences.
Global Alignment Mission: Find the best global alignment between two sequences.

Find the best alignment of **GAATC** and **CATAC**:

<table>
<thead>
<tr>
<th>GAATC</th>
<th>GAAT–C</th>
<th>−GAAT–C</th>
<th>GAAT–C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATAC</td>
<td>C–ATAC</td>
<td>C–A–TAC</td>
<td>C–ATAC</td>
</tr>
<tr>
<td>GAATC–C</td>
<td>GAAT–C</td>
<td>GA–ATC</td>
<td>GAAT–C</td>
</tr>
<tr>
<td>CA–TAC</td>
<td>CA–TAC</td>
<td>CATA–C</td>
<td>CA–TAC</td>
</tr>
</tbody>
</table>

(some of a very large number of possibilities)
Global Alignment Mission: Find the best global alignment between two sequences.

Find the best alignment of **GAATC** and **CATAC**:

- **GAAT-C**
- **C-A-TAC**

Conceptually:

- What does a “correct” alignment mean?
- Correct vs. Best
Global Alignment Mission:
Find the best global alignment between two sequences.

Find the best alignment of **GAATC** and **CATAC**:

```
  GAAT--C
---A--TAC
```

Technically:

- This is a search (optimization) problem!!
- What do we need to solve this problem?
Global Alignment Mission:

Find the best global alignment between two sequences.

An algorithm for finding the alignment with the best score

A method for scoring alignments
Scoring Principles

- Score each locus independently.
- The alignment score will be the sum of the scores in all loci.
- Perfect Matches will get a positive (good) score.
- What about mismatches?
Scoring Principles

• Score each locus independently.
• The alignment score will be the sum of the scores in all loci.
• Perfect Matches will get a positive (good) score.
• What about mismatches?

<table>
<thead>
<tr>
<th>Purine</th>
<th>A</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrimidine</td>
<td>C</td>
<td>T</td>
</tr>
</tbody>
</table>

(transitions are typically about 2x as frequent as transversions in real sequences)
Scoring Aligned Bases

- A reasonable **substitution matrix**:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>C</td>
<td>-5</td>
<td>10</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>-5</td>
<td>10</td>
<td>-5</td>
</tr>
<tr>
<td>T</td>
<td>-5</td>
<td>0</td>
<td>-5</td>
<td>10</td>
</tr>
</tbody>
</table>

What about gaps?

- **GAATC**
- **CATAC**

\[-5 + 10 + -5 + -5 + 10 = 5\]
What About Gaps?

- A reasonable substitution matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>C</td>
<td>-5</td>
<td>10</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>-5</td>
<td>10</td>
<td>-5</td>
</tr>
<tr>
<td>T</td>
<td>-5</td>
<td>0</td>
<td>-5</td>
<td>10</td>
</tr>
</tbody>
</table>

What do gaps mean?

What if gaps have no penalty?

GAAT-C

CA-TAC

-5 + 10 + ? + 10 + ? + 10 = ?
Scoring Gaps?

- **Linear** gap penalty: every gap receives a score of d:

 \[
 \begin{align*}
 \text{GAAT} - \text{C} & \quad d = -4 \\
 \text{CA} - \text{TAC} & \\
 -5 + 10 + -4 + 10 + -4 + 10 = 17
 \end{align*}
 \]
Scoring Gaps?

- **Linear** gap penalty: every gap receives a score of d:

 $$\text{GAAT} - \text{C} \quad d = -4$$

 $$\text{CA} - \text{TAC}$$

 $$-5 + 10 + -4 + 10 + -4 + 10 = 17$$

- **Affine** gap penalty: opening a gap receives a score of d; extending a gap receives a score of e:

 $$\text{G} -- \text{AATC} \quad d = -4$$

 $$\text{CATA} -- \text{C} \quad e = -1$$

 $$-5 + -4 + -1 + 10 + -4 + -1 + 10 = 5$$
Same Method Applies to AA

BLOSUM62 Score Matrix

	A	R	N	D	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V	B	Z	X			
A	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-1	-1	1	0	-3	-2	0	-2	-1	0	-4	
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3	-1	0	-1	-4	
N	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3	3	0	-1	-4	
D	-2	-2	1	6	-3	3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	1	-4	-3	-3	4	1	-1	-4
C	0	-3	-3	-3	9	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1	-3	-3	-2	-4	
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	1	-2	-1	-2	0	3	-1	-4	
E	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	1	-3	-2	-2	1	4	-1	-4	
G	0	-2	0	-1	-3	-2	-2	6	2	-4	-4	-2	-3	-3	-2	0	2	-2	-3	-3	-1	-2	-1	-4	
H	-2	0	1	-1	-3	0	0	2	8	-3	-3	-1	-2	-1	-2	-1	2	-2	2	-2	3	0	0	-1	-4
I	-1	-3	-3	-3	-1	-3	-3	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3	-3	-3	-3	-1	-4	
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	-2	4	-2	2	0	-3	-2	-1	-2	-1	1	4	-3	-1	-4	
K	-1	2	0	-1	-3	1	1	2	-1	-3	-2	5	-1	-3	-1	0	1	-3	-2	-2	0	1	-1	-4	
M	-1	-1	-2	-3	-1	0	2	-3	-2	1	2	-1	5	0	2	-1	-1	-1	-1	1	3	-1	-3	-1	
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	0	3	0	6	-4	-2	-2	1	3	-1	-3	-3	-1	
P	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2	-2	-1	-2	-4	
S	1	-1	1	0	-1	0	0	0	-1	2	-2	0	-1	-2	1	4	1	-3	-2	-2	0	0	0	-4	
T	0	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	5	-2	-2	0	-1	1	0	-4	
W	-3	-3	-4	-4	-2	-2	-3	-2	-3	-2	-3	-1	1	4	-3	-2	1	1	2	-3	-4	-3	-2	-4	
Y	-2	-2	-3	-2	-1	-2	-3	-2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1	-3	-2	-1	-4		
V	0	-3	-3	-3	-1	-2	-3	-3	3	1	-2	1	1	-2	-2	0	3	-1	4	-3	-2	-1	-4		
B	-2	-1	3	4	-3	0	1	-1	0	-3	-4	0	-3	-3	-2	0	1	-4	-3	-3	4	1	-1	-4	
Z	-1	0	0	1	-3	3	4	-2	0	-3	-3	1	-1	-3	-1	0	1	-3	-2	-2	1	4	-1	-4	
X	0	-1	-1	-1	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	2	-1	-1	-1	-1	-1	-4	

Y mutates to V receives -1
M mutates to L receives 2
E gets deleted receives -10
G gets deleted receives -10
D matches D receives 6

Total score = -13

YMEGDLEIAPDAK

VL--DKELSPDGT
Global Alignment Mission:
Find the best global alignment between two sequences.

- An algorithm for finding the alignment with the best score
- A method for scoring alignments

Substitution matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>C</td>
<td>-5</td>
<td>10</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>-5</td>
<td>10</td>
<td>-5</td>
</tr>
<tr>
<td>T</td>
<td>-5</td>
<td>0</td>
<td>-5</td>
<td>10</td>
</tr>
</tbody>
</table>

Gap penalty:
- Linear gap penalty
- Affine gap penalty

Example:

- Sequence 1: GAAT
- Sequence 2: C

- Sequence 1: CA
- Sequence 2: TAC

Distance:

\[-5 + 10 + -4 + 10 + -4 + 10 = 17\]

Distance = 17
A simple algorithm

• **Align the two sequences: GAATC and CATA**

```
GAATC   GAAT-C  -GAAT-C  GAAT-C
CATA    C-ATAC  C-A-TAC  C-ATAC
GAATC-  GAAT-C  GA-ATC   GAAT-C
CA-TAC  C-ATAC  CATA-C   CA-TAC
```

Simple (exhaustive search) algorithm

1) Construct all possible alignments
2) Use the substitution matrix and gap penalty to score each alignment
3) Pick the alignment with the best score
How many possibilities?

- Align the two sequences: GAATC and CATAC

- How many different possible alignments of two sequences of length \(n \) exist?
How many possibilities?

- **Align the two sequences: GAATC and CATAC**

<table>
<thead>
<tr>
<th>GAATC</th>
<th>GAAT-C</th>
<th>-GAAT-C</th>
<th>GAAT-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATAC</td>
<td>C-ATAC</td>
<td>C-A-TAC</td>
<td>C-ATAC</td>
</tr>
<tr>
<td>GAATC-CA-TAC</td>
<td>GAAT-C</td>
<td>GA-ATC</td>
<td>GAAT-C</td>
</tr>
<tr>
<td>CA-TAC</td>
<td>CA-TAC</td>
<td>CATA-C</td>
<td>CA-TAC</td>
</tr>
</tbody>
</table>

- How many different possible alignments of two sequences of length \(n \) exist?

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\times10^\text{ })</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.5x10^2</td>
</tr>
<tr>
<td>10</td>
<td>1.8x10^5</td>
</tr>
<tr>
<td>20</td>
<td>1.4x10^11</td>
</tr>
<tr>
<td>30</td>
<td>1.2x10^17</td>
</tr>
<tr>
<td>40</td>
<td>1.1x10^23</td>
</tr>
</tbody>
</table>
Mission:

Find the best alignment between two sequences.

- Needleman–Wunsch Algorithm
- Dynamic programming

A algorithm for finding the alignment with the best score

A method for scoring alignments

Substitution matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>C</td>
<td>-5</td>
<td>10</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>-5</td>
<td>10</td>
<td>-5</td>
</tr>
<tr>
<td>T</td>
<td>-5</td>
<td>0</td>
<td>-5</td>
<td>10</td>
</tr>
</tbody>
</table>

Gap penalty:
- Linear gap penalty
- Affine gap penalty

GAAT-C

CA-TAC

\[d = -4 \]

\[-5 + 10 + -4 + 10 + -4 + 10 = 17 \]