A quick review

A The parsimony principle: R
A Find the tree that requires the ., 52559
fewest evolutionary changés . "
, ] ¢
A A fundamentally different method: }*\

A Search rather than reconstruct

A Parsimony algorithm ,% H
(@)

1.

2.

Construct all possible trees

For each site in the alignment and for each tree count t
minimal number of changes required

Addsites toobtain the total number of changesquired
for each tree

Pick the tree with the lowest score
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A quick reviewg contQ

A Small vs. large parsimony [\
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1. Bottom-up phase Determine the set of possibitates
2. Top-down phase Pick a state for each internal node

A Searching the tree space:
A Exhaustive search, branch and bou

A Hill climbing with Nearedieighbor Interchange

A Branch confidence and bootstrap support




Phylogenetic trees: Summary

Parsimony Trees:
1)Construct all possible trees

search the space of possible tree

2)Foreach site in the alignment ang
for each tree count the minimal
number of changesequiredusing
CAGOKQa | f 32N

3)Addall sites up to obtain the tota
number of changes for eattee
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Distance Trees:

4)Pick the tree with the lowest scor

1)Compute pairwise corrected
distances.

2)Buildtree by sequential clusterin
algorithm (UPGMA or Neighbor
Joining).

3)These algorithms dondonsider
all tree topologies, so they are
very fast, even for large trees

9

Maximum-Likelihood Trees:

1)Tree evaluated for likelihood of data given tree.

2)Usesa specific model for evolutionary rates (such as JGlegor).
3)Likeparsimony, must search tree space.

4)Usuallymost accurate method but slow.




Branchconfidence

How certain are we that this is

GAMXB
MELOOB GAMR2  GAVE3 GAMBB

the correct tree? ot Ay
fgga i # § o

MELO8

Can be reduced to many simpler.... oo
questions- how certain are we .
that eachbranch pointis

correct?
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Forexample at the circled asen

branch point, how certain are we ==/ ™ = N

that the threesubtreeshave the
correct content el T [ g

subtreel: QUAD25 QUA13
Subtree2: QUA03, QUA24, QUA23
Subtrees: everything else



Bootstrap support

Most commonly used

branchsupporttest:

1.Randomly sample
alignmentsites (with
replacement).

2.Use sample to estimatse
the tree.

3.Repeat many times.
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Sample same number
of sites, with replacement
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sample #2 yvt¢
|
Sample same number :
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(and so on)

Estimate of the tree

Bootstrap estimate
of the tree #1
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Bootstrap estimate
of the tree #2

(sample with replacement means that a sampled site remains in the soul
data after each sampling, so that some sites will be sampled thareonce)



Bootstrap support

For each branch point on the
computed tree, count what fraction -

GAM2  GAMBE3 GAM®BB

of the bootstrap trees have the same .| =« | o

AQ MELOS

subtreepartitions (regardless of 508
topology within the subtrees). o

For example at the circled branch point,

what fraction of the bootstrap trees have <7 o
a branch point where the three subtrees " ww o
include: A ..
Subtreet QUA025, QUAO013 = B s
Subtree2 QUA003, QUA024, QUA023 el e

Subtree3 everything else aot TR B

This fraction is théootstrap supportfor
that branch.



Original tree figure with branch suppor:
(here as fractions, also common to give % support
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Clustering

Genome 373
Genomic Informatics
Elhanan Borenstein

Some slides adapted from JacquesiHelden



Many different data types, same structu

“conditions”

[0.10.0061.02.1082201.12.23.12]0

[0.21.008041406321213.01.20]1




The clustering problem

A Thegoal of gene clustering process is to partition the
genes into distinct sets such th@enes thatare
assigned to the same clustér NS & avihi¥eA € N
genes assignedtBA FFSNBY G Of dza 0 S
aAYAT ]I NEO

“conditions” ————»
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Why clustering



Why clustering

A Clustering genes or conditions is a basic tool for the
analysis of expression profiles, acah beuseful for
many purposesncluding:

A Inferring functionsof unknowngenes
(assuming a similaxpressiorpattern impliesa similar function).

A ldentifyingdiseaseprofiles
(tissueswith similar pathology should yield similexpression profiles).

A Decipheringegulatorymechanismsco-expression of genes
may imply ceregulation

A Reducing dimensionality.



Whyis clustering a
hard computational problem?
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Measuring similarity/distance

A Animportant step inmanyclusteringmethods is the
selection of alistancemeasure netric), defining the

distancebetween?2 datapoints (e.g.2 genes)
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Measuring similarity/distance

A{2 X K2¢ R2 6S YSI adz2NB i
point in a multtdimensional space?
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Measuring similarity/distance

A{2 X K2¢ R2 6S YSI adz2NB i
point in a multtdimensional space?

p-norm
- . o il i= (Y lail)
A Commondistance functions:
A TheEuclideandistance [zl = /s +--+2~ 2-norm
(a.k.ad R A & astheé & t oistancs.
A TheManhattan distance - 1-norm
(a.k.ataxicabdistance %—
A Themaximumnorm - — infinity -norm
(a.k.ainfinity distanceg j

A TheHammingdistance
(numberof substitutions required to change om®int into another).



Correlationas distance

A Another approach is to use the correlation between
two data points as a distance metric.

A PearsorCorrelation
A SpearmarCorrelation

A AbsoluteValue of Correlation

r=0.83 r=0.83
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Metric matters!

A The metric of choice has a marked impact onshape
of the resulting clusters:

A Someelements may be close to ormother in one metric
and far from one anther in a different metric.

A Consider, for example, the point (x=1,yahyd the
origin.
A2 KIG§Q&a 0 KSANI Rniorani{BuclidedlistdnEe)?y
A2 KIIG§Q&a 0KSANI Rnorinijaky. @aSicaloliza A y
Manhattan norm)?
A 2 K I théraistance using thafinity-norm?



The clustering problem

A Agood clustering solution should have tfeatures:

1. Highhomogeneity homogeneity measures the similarity
between genes assigned tile samecluster

2. Highseparation separation measures th#istance/dis

similaritybetweenclusters.
(If two clustershave similaexpression patterns, thetney

should probably benerged into onecluster).
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A dUnsupervisedearningg LIN2 6 f SY
A No single solution is necessarily theue/correct!

A Thereis usually dradeoff between homogeneity and
separation:

A More clustersh increased homogeneity but decreased separation

A Less clusters, Increased separation but reducé@®mogeneity

A Method matters: metric matters: definitions matter:

A Thereare many formulations of the clustering problemnr
most of them areNP-hard (why?)

A In most casesheuristic methodsor approximationsare
used.



One problem, numerous solutions
A Many algorithms:

A Hierarchical clustering
k-means

selforganizing maps (SOM)
Knn

PCC

CAST

CLICK

A Theresults(i.e., obtained clusters) can vadyastically
dependingon:
A Clusteringnethod

A Parametersspecific to each clustering method (e.g. number
of centersfor the k-mean methodagglomeration rule for
hierarchical clusteringgtc.)

v v v v D D



Hierarchical clustering



Hierarchical clustering

A An agglomerativeclustering method
A Takesas input a distance matrix
A Progressivelyegroups the closesibjects/groups
A The result is #&ree - intermediate nodes represerdlusters
A Branch lengths represent distances between clusters

Distance matrix

Tree representation
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object 1 0.00

object 2 4.00 0.00

object 3 6.00 6.00 0.00

object 4 3.50 2.00 5.50 0.00

object 5 1.00 4.50 6.50 4.00 0.00

branch < object 1
node\ 4%
3 — object 5
E object 4
M C
’ object 2
root object 3

leaf
nodes
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Hierarchical clustering algorithm

. Assigreach object to a separate cluster

. Findthe pair of clusters with the shortest distance,
andregroup theminto a singlecluster.

. Repeat2 until there is a singleluster.




Hierarchical clustering algorithm

. Assigreach object to a separate cluster

. Findthe pair of clusters with the shortest distance,
and regroup theminto a singlecluster.

. Repeat Aintil there is a singleluster.




Hierarchical clustering

3.

Assigneach object to a separate cluster

Findthe pair of clusters with the shortest distance,
and regroup theminto a singlecluster.

Repeat2 until there Is a singleluster.

A Oneneeds to define a (dis)similarity metric between

two groups There are several possibilities
A Average linkagethe average distance between objects from
groups A and B
A Single linkagethe distance between the closest objects
from groups A and B

A Complete linkagethe distance between the most distant
objects from groups A and



Impact of the agglomeration rule

A Thesefour trees were huilt from the same distance matrix,
using4 different agglomeration rules.

Random data - Single lignage Random data - Average lignage

/

30 35 40 45 50 55

Singlelinkage typically
creates nesting clusters

hiclust (*, "singla”) helust {*, "average”)
Random data - Complete lignage
v}

Haight
Height

Completelinkagecreate
more balanced trees.

Note: these trees were
computedfrom a matri
of random numbers.
The impressiomf
structure isthusa
complete artifact.

Height

hclust (*, "complate”) holust {*, "ward")




Hierarchical clustering result
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Clustering in both dimensions

A We cancluster genesgonditions (sampleshr both.



