Scoring Alignments

Genome 373
Genomic Informatics
Elhanan Borenstein
Informatic Challenges: Examples

• Sequence comparison:
 – Find the best alignment of two sequences
 – Find the best match (alignment) of a given sequence in a large dataset of sequences
 – Find the best alignment of multiple sequences

• Motif and gene finding

• Relationship between sequences
 – Phylogeny

• Clustering and classification

• Many many many more ...
Informatic Challenges: Examples

• Sequence comparison:
 – Find the best alignment of two sequences
 – Find the best match (alignment) of a given sequence in a large dataset of sequences
 – Find the best alignment of multiple sequences

• Motif and gene finding

• Relationship between sequences
 – Phylogeny

• Clustering and classification

• Many many many more ...
One of many commonly used tools that depend on sequence alignment.
Motivation

• Why compare/align two protein or DNA sequences?
Motivation

- Why compare/align two protein or DNA sequences?
 - Determine whether they are descended from a common ancestor (homologous).
 - Infer a common function.
 - Locate functional elements (motifs or domains).
 - Infer protein or RNA structure, if the structure of one of the sequences is known.
 - Analyze sequence evolution
Sequence Alignment

G − A A T T T C A G T T T A
| | | | | |
G G − A − T C − G − − A
Mission: Find the best alignment between two sequences.
Sequence Alignment

• Find the best alignment of **GAATC** and **CATAC**.

<table>
<thead>
<tr>
<th>GAATC</th>
<th>GAAT-C</th>
<th>-GAAT-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATAC</td>
<td>C-ATAC</td>
<td>C-A-TAC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GAATC-</th>
<th>GAAT-C</th>
<th>GA-ATC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-TAC</td>
<td>CA-TAC</td>
<td>CATA-C</td>
</tr>
</tbody>
</table>

(some of a very large number of possibilities)
Mission: Find the best alignment between two sequences.

This is an optimization problem!

What do we need to solve this problem?
Mission: Find the best alignment between two sequences.

- A “search” algorithm for finding the alignment with the best score
 - Dynamic programming

- A method for scoring alignments
 - Substitution matrix
 - Gap penalties
Scoring Principles

GAATC
CATAC

• Score each locus independently.
• The alignment score will be the sum of the scores in all loci.
• Perfect Matches will get a positive (good) score.
• What about mismatches?
Scoring Principles

GAATC
CATAC

• Score each locus independently.
• The alignment score will be the sum of the scores in all loci.
• Perfect Matches will get a positive (good) score.
• What about mismatches?

(transitions are typically about 2x as frequent as transversions in real sequences)
Scoring Aligned Bases

- A reasonable **substitution matrix**:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>C</td>
<td>-5</td>
<td>10</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>-5</td>
<td>10</td>
<td>-5</td>
</tr>
<tr>
<td>T</td>
<td>-5</td>
<td>0</td>
<td>-5</td>
<td>10</td>
</tr>
</tbody>
</table>

GAATC
CATAC

$-5 + 10 + -5 + -5 + 10 = 5$

What about gaps?
What About Gaps?

• A reasonable substitution matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>-5</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>C</td>
<td>-5</td>
<td>10</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>-5</td>
<td>10</td>
<td>-5</td>
</tr>
<tr>
<td>T</td>
<td>-5</td>
<td>0</td>
<td>-5</td>
<td>10</td>
</tr>
</tbody>
</table>

What if gaps have no penalty?
What do gaps mean?
What if gaps have no penalty?
Scoring Gaps?

- **Linear** gap penalty: every gap receives a score of d:

 \[
 \text{GAAT}\text{--}C \quad d = -4
 \]

 \[
 \text{CA}\text{--}\text{TAC}
 \]

 \[
 -5 + 10 + -4 + 10 + -4 + 10 = 17
 \]

- **Affine** gap penalty: opening a gap receives a score of d; extending a gap receives a score of e:

 \[
 \text{G}\text{----AATC} \quad d = -4
 \]

 \[
 \text{CATA}\text{----C} \quad e = -1
 \]

 \[
 -5 + -4 + -1 + 10 + -4 + -1 + 10 = 5
 \]
Same Method Applies to AA

BLOSUM62 Score Matrix

	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V	B	Z	X	
A	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-1	-1	1	0	-3	-2	0	-2	-1	0	-4
R	-1	5	0	-2	-3	2	1	0	-3	-2	-1	-1	-1	-3	-2	-1	0	-1	-3	-2	-3	1	0	-1
N	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	4	-2	-2	-3	0	-1	-4
D	-2	2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	1	4	-3	-3	4	1	-1	-4
C	-2	0	-3	-3	9	-3	-4	-3	-3	-1	-1	-1	-2	-3	-1	-2	-1	-2	-2	-1	-3	-3	-2	-1
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	3	-1	0	1	-2	-1	-2	0	3	-1	-4
E	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	2	-2	-2	1	0	-1	-3	-2	-2	1	4	-1
G	0	2	-2	-1	-3	-2	-2	6	-4	-2	-3	-3	-2	0	2	-2	-3	-3	-3	-1	-2	-1	-1	-4
H	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-2	-2	-2	-3	0	0	0	-1	-4
I	-1	-3	-3	-3	-1	-3	-3	3	4	2	-3	1	0	-3	-2	-1	-3	-1	3	3	-3	-3	-1	-1
L	-1	2	-3	-3	-4	-1	-2	3	-4	-3	-3	-2	4	-2	1	2	-3	-1	1	4	-3	-3	-1	-4
K	-1	2	0	-1	-3	1	1	2	-1	-3	-2	5	1	3	-1	0	1	-3	-2	-2	0	1	-1	-4
M	-1	1	-2	-3	-1	1	0	2	-3	-2	1	1	5	0	2	-1	-1	-1	-1	1	3	-3	-1	-4
F	-2	3	-3	-3	-2	-3	-3	3	0	0	-3	0	6	4	-2	-2	1	3	1	3	-3	-3	-1	-4
P	-1	2	-2	-1	-3	-1	1	2	-2	3	-3	3	2	4	7	1	-1	-4	3	-2	-2	1	-2	-4
S	1	1	0	1	0	0	0	1	-2	-2	0	1	2	-1	4	1	3	2	-2	0	0	0	-4	
T	0	1	0	-1	1	0	0	0	1	2	1	0	1	2	-2	0	1	2	1	1	5	2	-2	-4
W	-3	3	-4	-4	-2	-2	3	-2	-3	-2	-3	-1	1	4	-3	2	1	1	2	-3	-4	-3	-2	-4
Y	-2	2	-3	-3	-2	-2	0	-1	-2	-3	-3	-1	2	1	1	2	-2	0	3	-1	4	-3	-2	-1
V	0	3	-3	-3	-1	-2	3	-3	3	1	2	1	2	1	1	2	2	0	3	-1	4	3	-2	-1
B	-2	1	3	-4	-3	-1	0	0	1	-4	-3	2	0	1	1	4	-3	3	-3	4	1	1	-4	
Z	-1	0	0	1	-3	3	4	-2	0	-3	-3	1	1	3	-1	0	1	3	-2	1	4	1	-4	
X	0	1	-1	-1	-2	1	-1	-1	1	1	-1	-1	1	-1	1	-1	1	1	2	0	0	1	-1	

- regular 20 amino acids
- ambiguity codes and stop

Y mutates to V receives -1
M mutates to L receives 2
E gets deleted receives -10
G gets deleted receives -10
D matches D receives 6
Total score = -13

YMELGDEIAPDANK
+ D E++PD
VL--DKELSPDGT