Scoring Alignments

Genome 373 Genomic Informatics Elhanan Borenstein

Informatic Challenges: Examples

- Sequence comparison:
 - Find the best alignment of two sequences
 - Find the best match (alignment) of a given sequence in a large dataset of sequences
 - Find the best alignment of multiple sequences
- Motif and gene finding
- Relationship between sequences
 - Phylogeny
- Clustering and classification
- Many many many more ...

Informatic Challenges: Examples

• Sequence comparison:

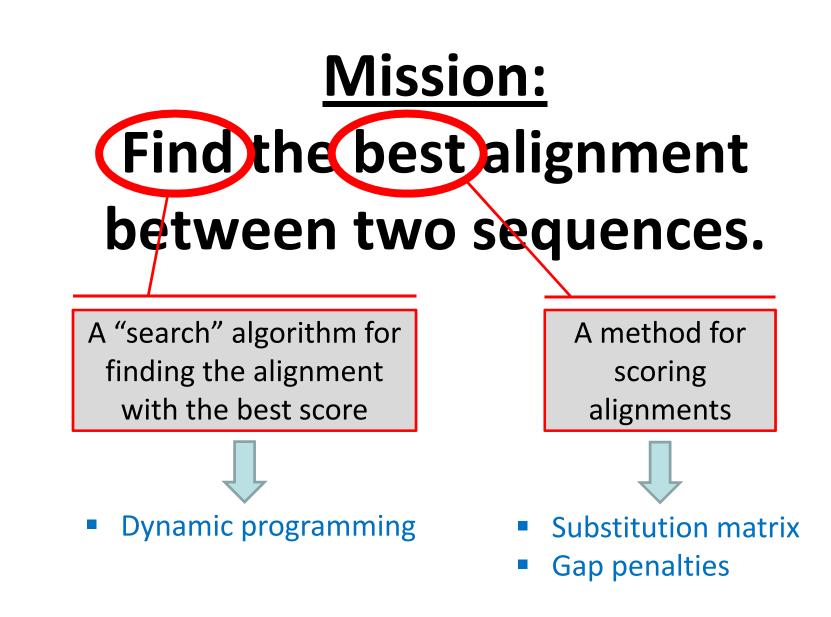
- Find the best alignment of two sequences
- Find the best match (alignment) of a given sequence in a large dataset of sequences
- Find the best alignment of multiple sequences
- Motif and gene finding
- Relationship between sequences
 - Phylogeny
- Clustering and classification
- Many many many more ...

<u>Eile Edit View Go Bookmarks Tools Window Help</u>	
🔹 🗸 💫 💦 👔 👔 👔 🕹 http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi?CMD=Web&LAYOUT=TwoWindows&AUTO_FORMAT=Semiauto&ALIGNME	NTS=50&ALIGNMENT_VIEW=Pairwise&CDD_SEARCH=on&CLIENT=w 🔽 🥖 Search 📑 🗸 🎹
🚮 Home 🛛 👔 Bookmarks 🥢 temp 🖉 Google 🏒 Internal 🥒 UW directory	
SNCBI Nucleotide Protein Translations Retrieve results for an RID	
subsequence From: To:	One of many commonly sed tools that depend
$\frac{\text{database}}{\text{CD-Search}} \checkmark$	n sequence alignment.
Now: BLASTI or Resol quory Resol all Options for advanced blasting	
Limit by entrez or select from: All organisms	
Composition-based statistics	
Choose filter F Low complexity T Mask for lookup table only T Mask lower case	
Expect 10 Word Size 3 -	
→ → → → → → → → → → → → → → → → → → →	- ۵-40-

Motivation

• Why compare/align two protein or DNA sequences?

Motivation


- Why compare/align two protein or DNA sequences?
 - Determine whether they are descended from a common ancestor (homologous).
 - Infer a common function.
 - Locate functional elements (motifs or domains).
 - Infer protein or RNA structure, if the structure of one of the sequences is known.
 - Analyze sequence evolution

Sequence Alignment

<u>Mission:</u> Find the best alignment between two sequences.

This is an optimization problem!

What do we need to solve this problem?

Scoring Alignments

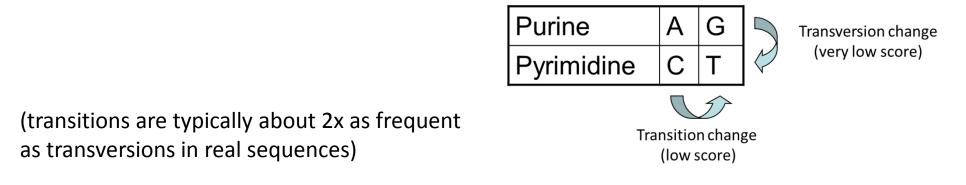
• Find the best alignment of GAATC and CATAC.

GAAT-C	-GAAT-C
C-ATAC	C-A-TAC
GAAT-C	GA-ATC
CA-TAC	CATA-C
	C-ATAC GAAT-C

(some of a very large number of possibilities)

• We need a way to measure the quality of a candidate alignment.

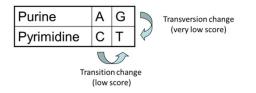
Scoring Principles


GAATC CATAC

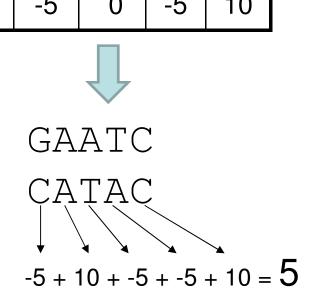
- Score each locus independently.
- The alignment score will be the sum of the scores in all loci.
- Perfect Matches will get a positive (good) score.
- What about mismatches?

Scoring Principles

GAATC CATAC

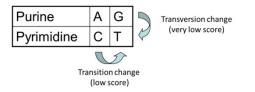

- Score each locus independently.
- The alignment score will be the sum of the scores in all loci.
- Perfect Matches will get a positive (good) score.
- What about mismatches?

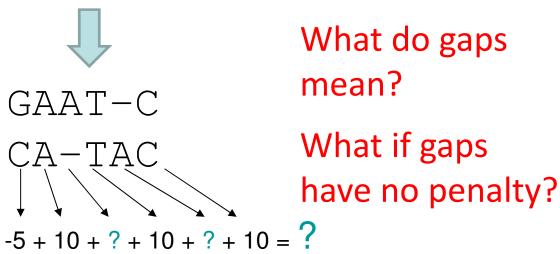
Scoring Aligned Bases


• A reasonable **substitution matrix**:

	Α	С	G	Т
Α	10	-5	0	-5
С	-5	10	-5	0
G	0	-5	10	-5
Т	-5	0	-5	10

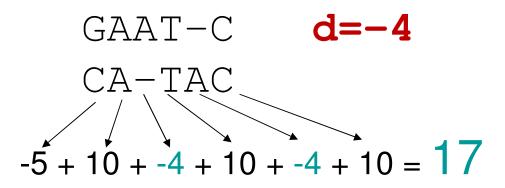
What about

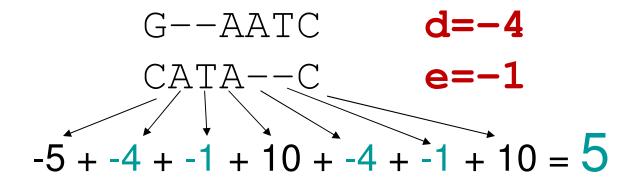

gaps?



What About Gaps?

• A reasonable **substitution matrix**:


	Α	С	G	Т
Α	10	-5	0	-5
С	-5	10	-5	0
G	0	-5	10	-5
Т	-5	0	-5	10



Scoring Gaps?

• Linear gap penalty: every gap receives a score of d:

 Affine gap penalty: opening a gap receives a score of d; extending a gap receives a score of e:

Same Method Applies to AA

BLOSUM62 Score Matrix

	Α	R	N	D	С	Q	Е	G	Н	I	L	К	М	F	Ρ	S	Т	W	Y	۷	В	Ζ	Х	*	V	(mutates to V receives -1
A	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-2	-1	1	0	-3	-2	0	-2	-1	0	-4		
R	+	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-	-1	0	-1	-4		A mutates to L receives 2
N	-	-	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2		3	0	-1	-4	F	E gets deleted receives -10
D	-		1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	_	0	-1	-4	-3	-3	4	1	-1	-4		-
С	-) -3	-3		9	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1	-3	-3	-2	-4		G gets deleted receives -10
Q	-	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3 -3	-1	0	-1	-2 -3	-1	-2	0	3	-1	-4		D matches D receives 6
E	+	-	0	_1	-4 -3	2 -2	5 -2	-2 6	-2	-3 -4	-3	-2	-2 -3	-3 -3	-1	0	-1	3 -2	-2 -3	-2 -3	-1	-2	-1	-4		
н	-		1	-1	-3	0	-2	-2	8	-4		-2	-2	-1	-2	-1	-2	-2	-3		-1	-2	-1	-4		fotal score = -13
	-		-3		-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3	-3	-	-1	-4		
L	-1		-3		-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1	-4	-3	-1	-4		
к	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2	0	1	-1	-4		YMEGDLEIAPDAK
М	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1	-3	-1	-1	-4		
F	-2	2 -3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1	-3	-3	-1	-4		+ D E++PD
Р	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2	-2	-1	-2	-4		VLDKELSPDGT
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2	0	0	0	-4		
Т	() -1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0	-1	-1	0	-4		
W	+		-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11	2	-3	-4	-3	-2	-4		
Y	-2		-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1	-3	-2	-1	-4		
V	(-	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0		-1	4	-3	-2	-1	-4		
B	-		3	4	-3	0	1	-1	0	-3	-4	0	-3	-3	-2	0	-1	-4	-3		4	1	-1	-4		
Z	-1		0	1	-3	3	4	-2 -1	0	-3 -1	-3 -1	-1	-1 -1	-3	-1	0	-1	-3	-2	-2	-1	4	-1	-4		
*) -1	-1	-1	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-2 -4	0	0	-2	-1 -4	-1	-1	-1	-1	-4		
						-7	-4		-4			-4	-7	-4	-4	-4								<u> </u>		
						r	eg	ula	r 2	ر 0 a	ami	no	ac	ids					ar	mbi	igu	ity	со	des		
							2													а	nd	st	ор			

